如图,已知抛物线y=ax2+bx+c(a≠0)的顶点M在第一象限,抛物线与x轴相交于A、B两点(点A在点B的左边),与y轴交与点C,O为坐标原点,如果△ABM是

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点M在第一象限,抛物线与x轴相交于A、B两点(点A在点B的左边),与y轴交与点C,O为坐标原点,如果△ABM是

题型:不详难度:来源:
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点M在第一象限,抛物线与x轴相交于A、B两点(点A在点B的左边),与y轴交与点C,O为坐标原点,如果△ABM是直角三角形,AB=2,OM=


5

(1)求点M的坐标;
(2)求抛物线y=ax2+bx+c的解析式;
(3)在抛物线的对称轴上是否存在点P,使得△PAC为直角三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
答案
(1)

∵点M为抛物线的顶点,
∴MA=MB,
又∵△ABM是直角三角形,
∴△AMB是等腰直角三角形,
∵AB=2,
∴ME=1,
在Rt△OME中,可得OE=


OM2-ME2
=2,
故可得点M的坐标为(2,1).
(2)∵AE=BE=
1
2
AB=1,OE=2,
∴OA=1,OB=3,
∴点A的坐标为(1,0),点B的坐标为(3,0),
将点A、B、M的坐标代入抛物线解析式可得:





a+b+c=0
9a+3b+c=0
4a+2b+c=1

解得:





a=-1
b=4
c=-3

故抛物线的解析式为:y=-x2+4x-3.
(3)设点P的坐标为(2,y),
则AC2=10,AP2=1+y2,CP2=4+(y+3)2
①当∠PAC=90°时,AC2+AP2=CP2,即10+1+y2=4+(y+3)2
解得:y=-
1
3

即此时点P的坐标为(2,-
1
3
);
②当∠PCA=90°时,AC2+CP2=AP2,即10+4+(y+3)2=1+y2
解得:y=-
11
3

即此时点P的坐标为(2,-
11
3
);
③当∠APC=90°时,AP2+CP2=AC2,即1+y2+4+(y+3)2=10,
解得:y=-1或-2,
即此时点P的坐标为(2,-1)或(2,-2);
综上可得点P的坐标为(2,-
1
3
)或(2,-
11
3
)或(2,-1)或(2,-2).
举一反三
抛物线y=a(x+2)2+c与x轴交于A、B两点,与y轴负半轴交于点C,已知点A(-1,0),OB=OC.
(1)求此抛物线的解析式;
(2)若点M是抛物线上一个动点,且S△BCM=S△ABC,求点M的坐标;
(3)Q为直线y=-x-4上一点,在此抛物线的对称轴是否存在一点P,使得∠APB=2∠AQB,且这样的Q点有且只有一个?若存在,请求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
抛物线y=ax2+bx+3经过点A、B、C,已知A(-1,0),B(3,0).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;
(3)如图2,在(2)的条件下,延长DP交x轴于点F,M(m,0)是x轴上一动点,N是线段DF上一点,当△BDC的面积最大时,若∠MNC=90°,请直接写出实数m的取值范围.
题型:不详难度:| 查看答案
如图,抛物线y=
1
2
x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上.
(1)求a的值;
(2)求A,B的坐标;
(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.
题型:不详难度:| 查看答案
某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.
(1)求这条抛物线的解析式;
(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?
题型:不详难度:| 查看答案
在平面直角坐标系xOy内,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C.把直线y=-x-3沿y轴翻折后恰好经过B、C两点.
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在坐标轴上是否存在这样的点F,使得∠DFB=∠DCB?若存在,求出点F的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.