某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销售量就减少10件.设销售单价为x元

某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销售量就减少10件.设销售单价为x元

题型:不详难度:来源:
某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销售量就减少10件.设销售单价为x元(x≥50),一周的销售量为y件.
(1)求y与x之间的函数关系式;
(2)在超市对该种商品投入不超过10000元的情况下,要使得一周的销售利润达到8000元,销售单价应定为多少元?
(3)利用配方法,请你为超市估算一下,若要获得最大利润,一周应进货多少件?
答案
(1)设销售单价为x元,
y=500-10(x-50),
即y=1000-10x;

(2)由题意,得(x-40)(1000-10x)=8000,
解得x1=60,x2=80,
当x=60时,一周应进货y=1000-10x,y=400件,
成本=400×40=16000>10000,不符合题意,应舍弃;
当x=80时,一周应进货y=1000-10x=200件,
成本=200×40=8000<10000,符合题意;
答:销售单价应定为80元;

(3)利润S=(x-40)(1000-10x),
=-10x2+1400x-40000,
=-10(x-70)2+9000,
当x=70时,获得最大利润,一周应进货y=1000-10x=300件.
举一反三
已知抛物线C1y1=
1
2
x2-x+1
,点F(1,1).
(I)求抛物线C1的顶点坐标;
(II)①若抛物线C1与y轴的交点为A,连接AF,并延长交抛物线C1于点B,求证:
1
AF
+
1
BF
=2

②取抛物线C1上任意一点P(xP,yP)(0<xP<1),连接PF,并延长交抛物线C1于Q(xQ,yQ).试判断
1
PF
+
1
QF
=2
是否成立?请说明理由;
(III)将抛物线C1作适当的平移,得抛物线C2y2=
1
2
(x-h)2
,若2<x≤m时,y2≤x恒成立,求m的最大值.
题型:不详难度:| 查看答案
如图,将一块含30°角的学生用三角板放在平面直角坐标系中,使顶点A、B分别放置在y轴、x轴上,已知AB=2,∠ABO=∠ACB=30°.
(1)求点A、B、C的坐标;
(2)求过A,B,C三点的抛物线解析式;
(3)在(2)中的抛物线上是否存在点P,使△PAB的面积等于△ABC的面积?若不存在,请说明理由;若存在,请你求出点P的坐标.
题型:不详难度:| 查看答案
已知抛物线y=-
1
2
x2+bx+4
与x轴和y轴的正半轴分别交于点A和B,已知A点坐标为(4,0).
(1)求抛物线的解析式.
(2)如图,连接AB,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式.
(3)若抛物线y=-
1
2
x2+bx+4
上有一点F(-k-1,-k2+1),当m,n为何值时,∠PMQ的边过点F?
题型:不详难度:| 查看答案
如图,梯形OABC的顶点A、C分别在y轴、x轴的正半轴上,AB⊥OA,二次函数
y=mx2-mx+2的图象经过A、B、C三点.
(1)求点A、B的坐标;
(2)当AC⊥OB时,求二次函数的解析式.
题型:不详难度:| 查看答案
如图,利用两面夹角为135°且足够长的墙,围成梯形围栏ABCD,∠C=90°,新建墙BCD总长为15m,则当CD=______m时,梯形围栏的面积最大.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.