如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=30度,动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒,在

如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=30度,动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒,在

题型:浙江省中考真题难度:来源:
如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=30度,动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒,在x轴上取两点M,N作等边△PMN。

(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上,设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值。
答案
解:(1)直线AB的解析式为:
(2)∵∠AOB=90°,∠ABO=30°,
∴AB=2OA=8
∵AP=t,
∴BP=8-t,
∵△PMN是等边三角形,
∴∠MPB=90°,
∵tan∠PBM=
∴PM=
当点M与点O重合时,
∵∠BAO=60°,
∴AO=2AP,

∴t=2;
(3)①当0≤t≤1时,见图2,
设PN交EC于点H,
重叠部分为直角梯形EONG,
作GH⊥OB于H,
∵∠GNH=60°,GH=2
∴HN=2,
∵PM=8-t,
∴BM=16-2t,
∵OB=12,
∴ON=(8-t)-(16-2t-12)=4+t,
∴OH=ON-HN=4+t-2=2+t=EG,
∴S=(2+t+4+t)×2=2t+6
∵S随t的增大而增大,
∴当t=1时,Smax=8
②当1<t<2时,见图3,
设PM交EC于点I,交EO于点F,PN交EC于点G,
重叠部分为五边形OFIGN,
作GH⊥OB于H,
∵FO=4-2t,
∴EF=
∴EI=2t-2,


∴当时,S有最大值,
③当t=2时,MP=MN=6,即N与D重合,
设PM交EC于点I,PD交EC于点G,
重叠部分为等腰梯形IMNG,见图4,

综上所述:当0≤t≤1时,
当1<t<2时,
当t=2时,

∴S的最大值是
举一反三
进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价,若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为

[     ]

A.y=2a(x-1)
B.y=2a(1-x)
C.y=a(1-x2
D.y=a(1-x)2
题型:四川省中考真题难度:| 查看答案
△ABC中,∠A,∠B,∠C的对边分别为a,b,c,抛物线y=x2-2ax+b2交x轴于两点M,N,交y轴于点P,其中M的坐标是(a+c,0)。
(1)求证:△ABC是直角三角形;
(2)若S△MNP=3S△NOP,①求cosC的值;②判断△ABC的三边长能否取一组适当的值,使三角形MND(D为抛物线的顶点)是等腰直角三角形?如能,请求出这组值;如不能,请说明理由。
题型:四川省中考真题难度:| 查看答案
已知:如图,抛物线y=ax2+bx+c经过A(1,0)、B(5,0)、C(0,5)三点。

(1)求抛物线的函数关系式;
(2)若过点C的直线y=kx+b与抛物线相交于点E(4,m),请求出△CBE的面积S的值;
(3)在抛物线上求一点P0,使得△ABP0为等腰三角形,并写出P0点的坐标;
(4)除(3)中所求的P0点外,在抛物线上是否还存在其它的点P使得△ABP为等腰三角形?若存在,请求出一共有几个满足条件的点P(要求简要说明理由,但不证明);若不存在这样的点P,请说明理由。
题型:云南省中考真题难度:| 查看答案
如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:

(1)求A、B、C三点的坐标;
(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围。
题型:四川省中考真题难度:| 查看答案
如图,△OAB是边长为的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF。

(1)当A′E//x轴时,求点A′和E的坐标;
(2)当A′E//x轴,且抛物线经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由。
题型:浙江省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.