如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线恰好经过轴上A、B两点。(1)求A、B、C三点的坐标;(2)求过A、B、C三点的抛物线的解

如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线恰好经过轴上A、B两点。(1)求A、B、C三点的坐标;(2)求过A、B、C三点的抛物线的解

题型:山东省中考真题难度:来源:
如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线恰好经过轴上A、B两点。
(1)求A、B、C三点的坐标;
(2)求过A、B、C三点的抛物线的解析式;
(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位?
答案
解:(1)由抛物线的对称性可知AM=BM,
在Rt△AOD和Rt△BMC中,
∵OD=MC,AD=BC,
∴△AOD≌△BMC,
∴OA=MB=MA,
设菱形的边长为2m,
在Rt△AOD中,

解得m=1,
∴DC=2,OA=1,OB=3,
∴A、B、C三点的坐标分别为(1,0)、(3,0)、(2,);
(2)设抛物线的解析式为y=a(x-2)2+,代入A点坐标可得a=-
抛物线的解析式为y=-(x-2)2+
 (3)设抛物线的解析式为y=-(x-2)2+k
代入D(0,)可得k=5
所以平移后的抛物线的解析式为y=-(x-2)2+5
平移了5-=4个单位。
举一反三
如图,已知点A(3,0),以A为圆心作⊙A与y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l。
(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;
(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;
(3)点F是切线DE上的一个动点,当△BFD与EAD△相似时,求出BF的长。
题型:青海省中考真题难度:| 查看答案
将抛物线y=x2+1向下平移2个单位,则此时抛物线的解析式是(    )。
题型:湖南省中考真题难度:| 查看答案
已知:二次函数y=ax2+bx-2的图象经过点(1,0),一次函数图象经过原点和点(1,-b),其中a>b且a、b为实数。
(1)求一次函数的表达式(用含b的式子表示);
(2)试说明:这两个函数的图象交于不同的两点;
(3)设(2)中的两个交点的横坐标分别为x1、x2,求|x1-x2|的范围。
题型:湖南省中考真题难度:| 查看答案
如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动,设运动时间为t秒。
(1)用t的式子表示△OPQ的面积S;
(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;
(3)当△OPQ与△PAB和△QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比。
题型:湖南省中考真题难度:| 查看答案
某市政府大力扶持大学生创业。李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500。
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)
题型:山东省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.