如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点B(0,-5)。(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P

如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点B(0,-5)。(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P

题型:山东省中考真题难度:来源:
如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点B(0,-5)。
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小,请求出点P的坐标。
答案
解:(1)根据题意得
解得
∴二次函数的表达式为。(2)令y=0,得二次函数的图象与x轴的另一个交点坐标C(5,0)
由于P是对称轴上一点,
连结AB,由于
要使△ABP的周长最小,只要最小
由于点A与点C关于对称轴对称,连结BC交对称轴于点P,
=BP+PC=BC,根据两点之间,线段最短,可得的最小值为BC
因而BC与对称轴的交点P就是所求的点
设直线BC的解析式为
根据题意,可得解得
所以直线BC的解析式为
因此直线BC与对称轴的交点坐标是方程组的解,
解得
所求的点P的坐标为(2,-3)。
举一反三
如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG。
(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;
(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值。
题型:山东省中考真题难度:| 查看答案
如图,拋物线y1=ax2-2ax+b经过A(-1,0),C(2,)两点,与x轴交于另一点B;
(1)求此拋物线的解析式;
(2)若拋物线的顶点为M,点P为线段OB上一动点(不与点 B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=y2,求y2与x的函数关系式,并直接写出自变量x的取值范围;
(3)在同一平面直角坐标系中,两条直线x=m,x=n分别与拋物线交于点E,G,与(2)中的函数图像交于点F,H。问四边形EFHG能否为平行四边形?若能,求m,n之间的数量关系;若不能,请说明理由。
题型:湖北省中考真题难度:| 查看答案
如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线恰好经过轴上A、B两点。
(1)求A、B、C三点的坐标;
(2)求过A、B、C三点的抛物线的解析式;
(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位?
题型:山东省中考真题难度:| 查看答案
如图,已知点A(3,0),以A为圆心作⊙A与y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l。
(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;
(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;
(3)点F是切线DE上的一个动点,当△BFD与EAD△相似时,求出BF的长。
题型:青海省中考真题难度:| 查看答案
将抛物线y=x2+1向下平移2个单位,则此时抛物线的解析式是(    )。
题型:湖南省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.