如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点。 (1) 求抛物线的解析式; (2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段

如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点。 (1) 求抛物线的解析式; (2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段

题型:专项题难度:来源:
如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点。
(1) 求抛物线的解析式;
(2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由。
(注:抛物线的对称轴为
答案
解:(1)设抛物线的解析式为y=a(x+3)(x-4),
因为B(0,4)在抛物线上,
所以4=a(0+3)(0-4),
解得a=
所以抛物线解析式为
(2)连接DQ,
在Rt△AOB中,
所以AD=AB=5,AC=AD+CD=3+4=7,CD=AC-AD=7-5=2,
因为BD垂直平分PQ,
所以PD=QD,PQ⊥BD,
所以∠PDB=∠QDB,
因为AD=AB,所以∠ABD=∠ADB,∠ABD=∠QDB,
所以DQ∥AB,
所以∠CQD=∠CBA,∠CDQ=∠CAB,
所以△CDQ∽△CAB,
所以,,即
所以AP=AD- DP=AD-DQ=5-=

所以t的值是
(3)对称轴上存在一点M,使MQ+MC的值最小,
理由:因为抛物线的对称轴为
所以A(- 3,0),C(4,0)两点关于直线对称,
连接AQ交直线于点M,则MQ+MC的值最小。
过点Q作QE⊥x轴于E,所以∠QED=∠BOA=90°,
即DQ∥AB,∠BAO=∠QDE,△DQE∽△ABO,
 所以,即
所以QE=,DE=,所以OE=OD+DE=2+=
所以Q(),
设直线AQ的解析式为
,解得:
所以,直线AQ的解析式为
联立,解得:y=
所以,M点的坐标为
即在对称轴上存在点M,使MQ+MC的值最小。
举一反三
如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3)。平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒)。
(1)点A的坐标是________,点C的坐标是________;
(2)当t=______秒或______秒时,MN=AC;
(3)设△OMN的面积为S,求S与t的函数关系式;
(4)探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由。
题型:专项题难度:| 查看答案
如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米。
(1)当t=4时,求S的值;
(2)当4≤t≤10时,求S与t的函数关系式,并求出S的最大值。
题型:专项题难度:| 查看答案
如图1,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=
(1)求这个二次函数的表达式;
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由;
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度;
(4)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积。
题型:专项题难度:| 查看答案
已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac。
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;
(3)根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?
题型:专项题难度:| 查看答案
如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止。设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S。
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围。
题型:专项题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.