已知一抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8),求该抛物线的解析式。
题型:海南省期末题难度:来源:
已知一抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8),求该抛物线的解析式。 |
答案
解:设这个抛物线的解析式为 由已知,抛物线过三点,得
解这个方程组,得
所求抛物线的解析式为。 |
举一反三
如图,直角梯形OABC中,O为坐标原点,OA=OC,点C的坐标是(0,8),以点B为顶点的抛物线y=ax2+bx+c经过原点和x轴上的点A。求抛物线的解析式。 |
|
如图,已知抛物线y=x2+bx+c和直线y=kx经过点A(-1,-1)和B(4,4) (1)求直线AB和抛物线的解析式; (2)直线x=m()与抛物线交于点M,与直线AB交于点N,与x轴交于点P,求线段MN的长(用含m的代数式表示); (3)在条件(2)的情况下,连接OM、BM,是否存在m的值,使△BOM的面积S最大?若存在,请求出m的值,若不存在,请说明理由。 |
|
小明用计算器计算来研究方程的近似解,得到了代数式ax2+bx+c中的未知数x与代数式的值如下列表格所示,则可判断方程ax2+bx+c=0(a≠0,a,b,c)为常数)的一个解x的范围是 |
|
[ ] |
A. B. C. D. |
某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件,设每件售价x元(x为非负整数),使每星期的利润最大且每星期的销量较大,则x应为的元数是 |
[ ] |
A.41 B.42 C.42.5 D.43 |
如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点。 |
|
(1)求该抛物线的解析式; (2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标; (3)设(1)中的抛物线交y轴于C点。在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小,若存在,求出Q点的坐标;若不存在,请说明理由。 |
最新试题
热门考点