定理:图1,如果∠ADB=∠ACB,那么四边形ABCD有外接圆,也叫做A,B,C,D四点共圆.(注:本定理不需要证明) (1)图2,△ABC中,AC=BC,点E,F分别在线段AC,BC上运动(不与端点重合),而且CE=BF,O是△ABC的外心(外接圆的圆心,它到三角形三个顶点距离相等),试证明C,E,O,F四点共圆.(注:可以使用上述定理,也可以采用其他方法)
如果将问题2中的点C“分离”成两个点,那么就有: (2)图3,在凸四边形ABCD中,AD=BC,点E,F分别在线段AD,BC上运动(不与端点重合),而且DE=BF,直线AC,BD相交于点P,直线EF,BD相交于点Q,直线EF,AC相交于点R.当点E,F分别在线段AD,BC上运动(不与端点重合)时,探究△PQR的外接圆是否经过除点P外的另一个定点?如果是,请给出证明,并指出是哪个定点;如果不是,请说明理由. |