如图,D为等腰Rt△ABC的斜边AB的中点,E为BC边上一点,连接ED并延长交CA的延长线于点F,过D作DH⊥EF交AC于G,交BC的延长线于H,则以下结论:①

如图,D为等腰Rt△ABC的斜边AB的中点,E为BC边上一点,连接ED并延长交CA的延长线于点F,过D作DH⊥EF交AC于G,交BC的延长线于H,则以下结论:①

题型:不详难度:来源:
如图,D为等腰Rt△ABC的斜边AB的中点,E为BC边上一点,连接ED并延长交CA的延长线于点F,过D作DH⊥EF交AC于G,交BC的延长线于H,则以下结论:①DE=DG;②BE=CG;③DF=DH;④BH=CF.其中正确的是(  )
A.②③B.③④C.①④D.①②③④
魔方格
答案

魔方格
根据已知条件,
∵△ABC是等腰直角三角形,CD是中线.
∴BD=DC,∠B=∠DCA=45°.
又∵∠BDC=∠EDH=90°,即∠BDE+∠EDC=∠EDC+∠CDH
∴∠BDE=∠CDH
∴△DBE≌△DCG(ASA)
∴DE=DG;BE=CG.
同理可证:△DCH≌△DAF,可得:DF=DH;AF=CH.
∵BC=AC,CH=AF,∴BH=CF.
故选D.
举一反三
以线段AB为一边的等腰直角三角形有(  )
A.1个B.2个C.4个D.6个
题型:不详难度:| 查看答案
将两个完全相同的长方形拼成如图所示的“L”形图案,判断△ACF是什么三角形?说明理由.
魔方格
题型:不详难度:| 查看答案
如图,一棵树在离地面5.5米处被折断.落在地上刚好与地面形成30°的角,求这棵树原来的高度.魔方格
题型:不详难度:| 查看答案
我们已经学过直角三角形的一个重要性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.小明得出,如图△ABC中,有∠B=60°,2BC=AB.爱动脑筋的他想,如果先画∠ABC=60°,且有2BC=AB,比如
魔方格
,BC=1,AB=2,连接AC,那么得到的△ABC是否是直角三角形呢?画完后他发现是的,你能帮他证明吗?
题型:不详难度:| 查看答案
阅读:定理“直角三角形斜边上的中线等于斜边的一半”,如图,Rt△ABC中,D为AB中点,则CD=AD=BD=
1
2
AB
.(此定理在解决下面的问题中要用到)
应用:如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN;
(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;
(2)若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明:若不成立,请说明理由;
(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.

魔方格
魔方格
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.