等边△ABC,在平面内找一点P,使△PBC、△PAB、△PAC均为等腰三角形,具备这样条件的P点有多少个?(  )A.1个B.4个C.7个D.10个

等边△ABC,在平面内找一点P,使△PBC、△PAB、△PAC均为等腰三角形,具备这样条件的P点有多少个?(  )A.1个B.4个C.7个D.10个

题型:不详难度:来源:
等边△ABC,在平面内找一点P,使△PBC、△PAB、△PAC均为等腰三角形,具备这样条件的P点有多少个?(  )
A.1个B.4个C.7个D.10个
答案
由点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,
可知P点为等边△ABC的垂心;
因为△ABC是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,
每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.
故选D.
举一反三
等腰三角形是一个特殊的三角形,它的性质丰富多彩.观察下图,在等腰△ABC中,过顶点B的一条特殊直线BD将三角形分割成两个小三角形△ABD和△DBC,它们仍为等腰三角形,角度如图所示.
你还可以找到这样的等腰三角形吗?即:过该等腰三角形一顶点作一直线,可以将该三角形分割成两个小等腰三角形.请再画出满足以上条件的不同等腰三角形2个.(要求:所画的两个等腰三角形的三内角不能对应相等.画出草图,并标出每个等腰三角形被分割后各个角的度数,如例图,无需说明理由.)魔方格
题型:不详难度:| 查看答案
如图,△ABC中,AB=AC,AD⊥BC,以下结论中错误的是(  )
A.△ABD≌△ACDB.∠B=∠BAD
C.D为BC的中点D.AD是△ABC的角平分线
魔方格
题型:不详难度:| 查看答案
如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是点E,F,连接EF,交AD于点G,则AD与EF垂直吗?证明你的结论.魔方格
题型:不详难度:| 查看答案
下列说法正确的是(  )
A.等腰三角形的高、中线、角平分线互相重合
B.顶角相等的两个等腰三角形全等
C.等腰三角形一边不可以是另一边的二倍
D.等腰三角形的两个底角相等
题型:不详难度:| 查看答案
如图,△ABC中,已知AB=AC,BE,CD分别是∠ABC,∠ACB的角平分线,下列结论:
(1)∠ABE=∠ACD;(2)BE=CD;(3)OC=OB;(4)CD⊥AB,BE⊥AC.
其中正确的是(  )
A.(1)(3)(4)B.(1)(2)(4)C.(1)(2)(3)D.(2)(3)(4)
魔方格
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.