如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接EP、CP、OP

如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接EP、CP、OP

题型:四川省中考真题难度:来源:
如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接EP、CP、OP.
(1)BD=DC吗?说明理由;
(2)求∠BOP的度数;
(3)求证:CP是⊙O的切线;
如果你解答这个问题有困难,可以参考如下信息:为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目.在进行小组交流的时候,小明说:“设OP交AC于点G,证△AOG∽△CPG”;小强说:“过点C作CH⊥AB于点H,证四边形CHOP是矩形”.
答案
解:(1)BD=DC.连接AD,
∵AB是直径,∴∠ADB=90°,
∵AB=AC,∴BD=DC;
(2)∵AD是等腰三角形ABC底边上的中线,
∴∠BAD=∠CAD,
=
∴BD=DE,∴BD=DE=DC,
∴∠DEC=∠DCE,
∵△ABC中,AB=AC,∠A=30°
∴∠DCE=∠ABC=(180°﹣30°)=75°,
∵∠DEC=75°
∴∠EDC=180°﹣75°﹣75°=30°
∵BP∥DE,∴∠PBC=∠EDC=30°,
∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45°
∵OB=OP,∴∠OBP=∠OPB=45°,∴∠BOP=90°;
(3)证明:设OP交AC于点G,则∠AOG=∠BOP=90°
在Rt△AOG中,∵∠OAG=30°,∴=
又∵==,∴=,∴=
又∵∠AGO=∠CGP∴△AOG∽△CPG,
∴∠GPC=∠AOG=90°,∴CP是⊙O的切线)
举一反三
已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为[      ]
A.45°
B.75°
C.45°或75°
D.60°
题型:四川省中考真题难度:| 查看答案
如图(1),矩形纸片ABCD,把它沿对角线BD向上折叠,
(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法)
(2)折叠后重合部分是什么图形?说明理由.
题型:甘肃省中考真题难度:| 查看答案
如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交GD、CA于点E、F,与过点A且垂直于的直线相交于点G,连接DF.给出以下四个结论: ①;②点F是GE的中点;③AF=AB;④S△ABC=S△BDF,其中正确的结论序号是           
题型:浙江省中考真题难度:| 查看答案
如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1 )如图①,当点Q 在线段AC 上,且AP=AQ 时,求证:△BPE ≌△CQE ;
(2 )如图②,当点Q 在线段CA 的延长线上时,求证:△BPE ∽△CEQ ;并求当BP= ,CQ=时,P、Q两点间的距离 (用含的代数式表示).
题型:四川省中考真题难度:| 查看答案
如图,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,则下列五个结论:①AD上任意一点到AB、AC两边的距离相等;②AD上任意一点到B、C两点的距离相等;③AD⊥BC,且BD=CD;④∠BDE=∠CDF;⑤AE=AF.其中,正确的有
[     ]
A.2个
B.3个
C.4个
D.5个
题型:四川省同步题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.