如图,扇形ODE的圆心角为120°,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形ODE内(1)请连接OA、OB,并证明△AOF≌△BOG;(2)求证

如图,扇形ODE的圆心角为120°,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形ODE内(1)请连接OA、OB,并证明△AOF≌△BOG;(2)求证

题型:不详难度:来源:
如图,扇形ODE的圆心角为120°,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形ODE内
(1)请连接OA、OB,并证明△AOF≌△BOG;
(2)求证:△ABC与扇形ODE重叠部分的面积等于△ABC面积的
1
3

答案
证明:(1)如图,连接OA、OB,设OD交AB于F,OE交BC于G,
∵O是正三角形的中心,
∴OA=OB,∠OAF=∠OBG,∠AOB=120°,
∴∠AOF=120°-∠BOF,
∠BOG=120°-∠BOF,
∴∠AOF=∠BOG,
在△AOF和△BOG中





∠OAF=∠OBG
OA=OB
∠AOF=∠BOG

∴△AOF≌△BOG(ASA),

(2)当扇形的圆心角为120°时,△ABC与扇形重叠部分的面积,总等于△ABC的面积的
1
3

证明如下:
①当扇形的圆心角与正三角形的中心角重合时:
显然,△ABC与扇形重叠部分的面积等于△ABC的面积的
1
3

②当扇形的圆心角与正三角形的中心角不重合时:
根据(1)中△AOF≌△BOG(ASA),
即S四边形OFBG=S△AOB=
1
3
S△ABC
即△ABC与扇形重叠部分的面积,总等于△ABC的面积的
1
3

同理可证,当扇形ODE旋转至其他位置时,结论仍成立.
由①、②可知,当扇形的圆心角为120°时,△ABC与扇形重叠部分的面积,总等于△ABC的面积的
1
3

举一反三
如图,△ABC为等边三角形,BE⊥AC于点E,AD⊥BD于点D,ADBC,则图中60°的角有(  )
A.3个B.4个C.5个D.6个

题型:不详难度:| 查看答案
正三角形OAB的顶点O是原点,A点坐标是(-2,0),B点在第二象限,则B点的坐标是______.
题型:不详难度:| 查看答案
如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是(  )
A.Ll=L2B.L1>L2C.L2>L1D.无法确定

题型:不详难度:| 查看答案
图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为
1
2
的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的
1
2
)后,得图③,④,…,记第n(n≥3)块纸板的周长为Pn,则Pn-Pn-1的值为(  )
A.(
1
4
)
n-1
B.(
1
4
)
n
C.(
1
2
)
n-1
D.(
1
2
)
n
题型:不详难度:| 查看答案
已知等边三角形△ABC和点P,过点P作三边AB、AC、BC的平行线分别交AC、BC、AB于F、G、E,如图①,点P在BC边上可得PE+PF+PG=BC.当点P在△ABC内部时(如图②),点P在△ABC外部时如图③,这两种情况下是否还存在PE+PF+PG=BC的结论?若成立请给予证明,若不成立,那么PE、PF、PG与BC又有怎样的关系,请写出你的猜想,不需证明.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.