(1)如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=40°,∠ABC=30°,求∠AEC的大小;(2)如图②,∠BAD的平分

(1)如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=40°,∠ABC=30°,求∠AEC的大小;(2)如图②,∠BAD的平分

题型:不详难度:来源:
(1)如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,ABCD,∠ADC=40°,∠ABC=30°,求∠AEC的大小;
(2)如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=m°,∠ABC=n°,求∠AEC的大小;
(3)如图③,∠BAD的平分线AE与∠BCD的平分线CE交于点E,则∠AEC与∠ADC、∠ABC之间是否仍存在某种等量关系?若存在,请写出你得结论,并给出证明;若不存在,请说明理由.
答案
(1)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=
1
2
∠BCD,∠EAD=∠EAB=
1
2
∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=
1
2
(∠D+∠B),
∵∠ADC=40°,∠ABC=30°,
∴∠AEC=
1
2
×(40°+30°)=35°;

(2)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=
1
2
∠BCD,∠EAD=∠EAB=
1
2
∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=
1
2
(∠D+∠B),
∵∠ADC=m°,∠ABC=n°,
∴∠AEC=
m°+n°
2


(3)延长BC交AD于点F,
∵∠BFD=∠B+∠BAD,
∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,
∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=
1
2
∠BCD,∠EAD=∠EAB=
1
2
∠BAD,
∵∠E+∠ECB=∠B+∠EAB,
∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-
1
2
∠BCD=∠B+∠BAE-
1
2
(∠B+∠BAD+∠D)=
1
2
(∠B-∠D),
即∠AEC=
∠ABC-∠ADC
2
举一反三
如图,在△ABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,求∠BPC的度数.
题型:不详难度:| 查看答案
如图,已知直线ABCD,∠C=125°,∠A=45°,那么∠E的大小为(  )
A.70°B.80°C.90°D.100°

题型:不详难度:| 查看答案
(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=______,∠XBC+∠XCB=______.

(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.
题型:不详难度:| 查看答案
如图,在△ABC中,AD、BE分别是BC、AC边上的高,AF、BG分别是△ABC中∠BAC,∠ABC的角平分线,∠C=50°,给出如下四个结论:
①∠3=50°,②∠4=115°,③∠1=∠2,④
AC
BC
=
AD
BE

其中正确的结论是(  )
A.①②③④B.②③④C.①③④D.①②④

题型:不详难度:| 查看答案
如图,线段AC,DE相交于点B,则图中可数出的三角形个数为(  )
A.60B.52C.48D.42

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.