解:(1)所画的点P在AC上且不是AC的中点和AC的端点 (2)画点B关于AC的对称点B",延长DB"交AC于点P,点P为所求
(3)连P1A、P1D、P1B、P1C和P2D、P2B,根据题意,∠AP1D=∠AP1B,∠DP1C=∠BP1C ∴∠AP1B+∠BP1C=180度 ∴P1在AC上 同理,P2也在AC上 在△DP1P2和△BP1P2中,∠DP2P1=∠BP2P1,∠DP1P2=∠BP1P2,P1P2公共 ∴△DP1P2≌△BP1P2 所以DP1=BP1,DP2=BP2,于是B、D关于AC对称 设P是P1P2上任一点,连接PD、PB,由对称性,得∠DPA=∠BPA,∠DPC=∠BPC 所以点P是四边形的半等角点 |