在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点。

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点。

题型:四川省期末题难度:来源:
在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点。
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP 仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由。
答案

解:(1)过点B作BD⊥x轴,垂足为D,
∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,
∴∠BCD=∠CAO,
又∵∠BDC=∠COA=90°,CB=AC,
∴△BCD≌△CAO,
∴BD=OC=1,CD=OA=2,
∴点B的坐标为(-3,1);
(2)抛物线y=ax2+ax-2经过点B(-3,1),则得到1=9a-3a-2,
解得a=
所以抛物线的解析式为
(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:
①若以点C为直角顶点;
则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1
过点P1作P1M⊥x轴,
∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,
∴△MP1C≌△DBC,
∴CM=CD=2,P1M=BD=1,可求得点P1(1,-1);
②若以点A为直角顶点;
则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2
过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,
∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),
经检验,点P1(1,-1)与点P2(2,1)都在抛物线上。

举一反三
如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是(    )。
题型:河南省期中题难度:| 查看答案
如图,AD平分∠MAN, BD⊥AM,CD⊥AN,垂足分别为B、C。
(1)说明:AB=AC;
(2)若点E为线段AB上一点,用尺规在射线AN上找一点F,使△CDF与△BDE全等(保留作图痕迹),请写出此时∠AFD 与∠AED的关系,并说明理由。
题型:江苏期中题难度:| 查看答案
已知在菱形ABCD中,E是BC的中点,且∠FAE=∠BAE。
(1)如图,当点F在边DC的延长线上时,求证:AF=BC-CF;
(2)当点F与点C重合时,求∠B的度数,并说明理由;
(3)当点F在边DC上时,(1)中求证的结论还成立吗?若不成立,请直接写出成立的结论;
(4)当∠B=90°时,请确定点F的位置。
题型:江苏期中题难度:| 查看答案
△ABC是边长为4的等边三角形,在射线AB和BC上分别有动点P、Q,且AP=CQ,连结PQ交直线AC于点D,作PE⊥AC,垂足为E。
(1)如图,当点P在边AB(与点A、B不重合)上,问:
①线段PD与线段DQ之间有怎样的大小关系?试证明你的结论;
②随着点P、Q的移动,线段DE的长能否确定?若能,求出DE 的长,若不能,简要说明理由;
(2)当点P在射线AB上,若设AP=x,CD=y,求:
①y与x之间的函数关系式,并写出x的取值范围;
②当x为何值时,△PCQ的面积与△ABC的面积相等。
题型:江苏期中题难度:| 查看答案
如图所示,AD、BC是⊙O的两条弦,且AD=BC。求证:AB=CD。
题型:山东省期中题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.