如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为   ;(

如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为   ;(

题型:不详难度:来源:
如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,

(1)的值为   
(2)求证:AE=EP;
(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.
答案
解:(1)∵四边形ABCD是正方形,∴∠B=∠D。
∵∠AEP=90°,∴∠BAE=∠FEC。
在Rt△ABE中,AB=3,BE=1,∴

(2)证明:在BA边上截取BG=BE,连接GE,

∵∠B=90°,BG=BE,∴∠BGE=45°。∴∠AGE=135°。
∵CP平分外角,∴∠DCP=45°。∴∠ECP=135°。
∴∠AGE=∠ECP。
∵AB=CB,BG=BE,
∴AB﹣BG=BC﹣BE,即:AG=CE。
又∠GAE=∠CEP,
∵在△AGE和△ECP中,∠AGE=∠ECP,AG=CE,∠GAE=∠CEP,
∴△AGE≌△ECP(ASA)。
∴AE=EP。
(3)存在。证明如下:
如图,作DM⊥AE于AB交于点M,则有:DM∥EP,

连接ME、DP,
∵在△ADM与△BAE中,
AD=BA,∠ADM=∠BAE,∠DAM=∠ABE,
∴△ADM≌△BAE(AAS)。∴MD=AE。
∵由(2)AE=EP,∴MD=EP。∴MDEP。
∴四边形DMEP为平行四边形。
解析

试题分析:(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答:
(2)在BA边上截取BG=BE,连接GE,根据角角之间的关系得到∠AGE=∠ECP,由AB=CB,BG=BE,得AG=EC,结合∠GAE=∠CEP,证明△AKE≌△ECP,于是结论得出。
(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出。 
举一反三
对角线互相   的平行四边形是菱形.
题型:不详难度:| 查看答案
如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD=     
题型:不详难度:| 查看答案
如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为     

题型:不详难度:| 查看答案
如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN,若四边形MBND是菱形,则等于【   】

A.       B.       C.      D.
题型:不详难度:| 查看答案
如图,四边形ABCD的对角线AC、BD相交于点O,且BD平分AC,若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为       .(结果保留根号)

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.