如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作

如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作

题型:不详难度:来源:
如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.

(1)试说明AE2+CF2的值是一个常数;
(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.
答案
解:(1)由已知∠AEB=∠BFC=90°,AB=BC,
又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF。
∵在△ABE和△BCF中,AB=BC,∠ABE=∠BCF,∠AEB=∠BFC,
∴△ABE≌△BCF(AAS)。
∴AE=BF。∴AE2+CF2=BF2+CF2=BC2=16为常数。
(2)设AP=x,则PD=4﹣x,
由已知∠DPM=∠PAE=∠ABP,∴△PDM∽△BAP。
,即

<0,当x=2时,DM有最大值为1。
解析
(1)由已知∠AEB=∠BFC=90°,AB=BC,结合∠ABE=∠BCF,证明△ABE≌△BCF,可得AE=BF,于是AE2+CF2=BF2+CF2=BC2=16为常数。
(2)设AP=x,则PD=4﹣x,由已知∠DPM=∠PAE=∠ABP,△PDM∽△BAP,列出关于x的二次函数,求出DM的最大值。 
举一反三
如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=【   】
A.12B.9C.6D.3

题型:不详难度:| 查看答案
下列命题中,正确的是【   】
A.平行四边形的对角线相等B.矩形的对角线互相垂直
C.菱形的对角线互相垂直且平分D.梯形的对角线相等

题型:不详难度:| 查看答案
如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件
     ,使四边形ABCD为矩形.

题型:不详难度:| 查看答案
下列说法中,正确的是【   】
A.同位角相等B.对角线相等的四边形是平行四边形
C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直

题型:不详难度:| 查看答案
如图,在平行四边形ABCD中,下列结论中错误的是【   】
A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.