如图,AD∥BC,∠A=90°,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F,求证:AB=FC.
题型:不详难度:来源:
如图,AD∥BC,∠A=90°,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F,求证:AB=FC. |
答案
先根据平行线的性质证得∠AEB=∠EBC,再结合∠A=90°,CF⊥BE,BE=BC即可根据“AAS”证得△ABE≌△FCB,从而证得结论. |
解析
试题分析:∵AD∥BC, ∴∠AEB=∠EBC. ∵∠A=90°,CF⊥BE. ∴∠A=∠CFB=90°. ∵BE=BC, ∴△ABE≌△FCB(AAS). ∴AB=FC. 点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握. |
举一反三
用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法: . |
D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC平面上的一动点,连接OB、OC,G、F分别是OB、OC的中点,顺次连接点D、G、F、E.
(1)如图,当点O在△ABC内时,求证:四边形DGFE是平行四边形; (2)若四边形DGFE是菱形,点O所在位置应满足什么条件?(直接写出答案,不需说明理由.) |
如图,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEPH的面积为5cm2,则四边形PFCG的面积为( ) |
如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为E,点F在BD上,连接AF、EF.
(1)求证:DA=DE; (2)如果AF∥CD,请判断四边形ADEF是什么特殊的四边形,并证明您的结论. |
如图下列三个条件:①AB∥CD,②∠B=∠C.③∠E=∠F.从中任选两个作为条件,另一个作为结论,编一道数学题,并说明理由。
已知:_______________________________ 结论:_______________________________ 理由: |
最新试题
热门考点