(1)顺次连接菱形的四条边的中点,得到的四边形是     .(2)顺次连接矩形的四条边的中点,得到的四边形是     .(3)顺次连接正方形的四条边的中点,得到

(1)顺次连接菱形的四条边的中点,得到的四边形是     .(2)顺次连接矩形的四条边的中点,得到的四边形是     .(3)顺次连接正方形的四条边的中点,得到

题型:不详难度:来源:
(1)顺次连接菱形的四条边的中点,得到的四边形是     
(2)顺次连接矩形的四条边的中点,得到的四边形是     
(3)顺次连接正方形的四条边的中点,得到的四边形是     
(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.
答案
(1)矩形;(2)菱形,(3)正方形(4)小青说的不正确
解析

试题分析:(1)顺次连接菱形的四条边的中点,则四边形肯定是平行四边形(两组对边分别平行的四边形是平行四边形),因为菱形的对角线互相垂直,所以可得到平行四边形的一个角是直角,所以四边形是矩形(有一个角是直角的平行四边形是矩形)
(2)顺次连接矩形的四条边的中点,矩形的对角线相等,所以四边形的四边都相等,等于矩形对角线的一半,所以四边形是菱形(四条边都相等的四边形是菱形)
(3)顺次连接正方形的四条边的中点,依然是正方形
(4)小青说的不正确
如图,四边形ABCD中AC⊥BD,AC=BD,BO≠DO,E、F、G、H分别为AD、AB、BC、CD的中点

显然四边形ABCD不是正方形但我们可以证明四边形ABCD是正方形(证明略)
所以,小青的说法是错误的
点评:本题考查平行四边形的判断,掌握平行四边形的判定方法,并用其来判定四边形的形状
举一反三
如图,顺次连接菱形的各边中点.若,则四边形的面积是             
题型:不详难度:| 查看答案
如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=____________.

题型:不详难度:| 查看答案
如图,正方形ABCD,点E、F分别为BC、CD边上的点,连接EF,点 M为EF上一点,且使AE平分∠BAM,AF平分∠DAF, 证明:∠EAF=45°
题型:不详难度:| 查看答案
若等腰梯形的上、下底边分别为1和3,一条对角线长为4,则这个梯形的面积是( )
A.16B.8C.4D.2

题型:不详难度:| 查看答案
如图,□ABCD的周长是28 cm,△ABC的周长是22 cm,则AC的长为
A.6 cmB.12 cmC.4 cmD.8 cm

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.