如图,在正方形ABCD中,点E在AB边上,且AE∶EB=2∶1,AF⊥DE于G交BC于F,则△AEG的面积与四边形BEGF的面积之比为             

如图,在正方形ABCD中,点E在AB边上,且AE∶EB=2∶1,AF⊥DE于G交BC于F,则△AEG的面积与四边形BEGF的面积之比为             

题型:不详难度:来源:
如图,在正方形ABCD中,点E在AB边上,且AE∶EB=2∶1,AF⊥DE于G交BC
于F,则△AEG的面积与四边形BEGF的面积之比为                    (    ) 
A.1∶2B.4∶9C.1∶4D.2∶3

答案
B
解析
∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD;
∵∠EAG=∠EDA=90°-∠AEG,∠B=∠DAB=90°,AD=AB,
∴△AED≌△BFA;
∴S△ABF=S△DAE
∴S△ABF-S△AEG=S△DAE-S△AEG,即S△AGD=S四边形BGFB
∵∠EAG=∠EDA,∠AGE=∠DGA=90°,
∴△AEG∽△DAG;
∴S△AEG /S△DAG =(AE /AD )2=="4/9" ;
∴S△AEG:S四边形BGFB=4:9;
故选B.
举一反三
把一个正方形分成面积相等的四个三角形的方法有很多,除了可以分成能相互全等的四个三角形外(连接对角线即可,如图(1)),你还能用三种不同的方法将正方形分成面积相等的四个不全部全等的三角形吗?请分别在图(2)、(3)、(4)中画出示意图。
题型:不详难度:| 查看答案
如图,已知等腰梯形ABCD中,AD∥BC,∠A=1100,则∠C =(   )
A.90°B.80°C.70°D.60°

题型:不详难度:| 查看答案
如图所示,CD是AB的垂直平分线,若AC=10cm,BD=20cm,则四边形ACBD的周长为             
题型:不详难度:| 查看答案
如图,AE∥BF,AC平分∠BAE,且交BF于点C,在AE上取一点D,使得AD=BC,连接CD和BD,BD交AC于点O. 

小题1:求证:△AOD≌△COB
小题2:求证:四边形ABCD是菱形.
题型:不详难度:| 查看答案
如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.

小题1:求证:EB=GD;
小题2:判断EB与GD的位置关系,并说明理由;
小题3:若AB=2,AG=,求EB的长
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.