已知菱形ABCD中,对角线AC=8cm,BD=6cm,在菱形内部(包括边界)任取一点P,使△ACP的面积大于6 cm2的概率为          

已知菱形ABCD中,对角线AC=8cm,BD=6cm,在菱形内部(包括边界)任取一点P,使△ACP的面积大于6 cm2的概率为          

题型:不详难度:来源:
已知菱形ABCD中,对角线AC=8cm,BD=6cm,在菱形内部(包括边界)任取一点P,使△ACP的面积大于6 cm2的概率为          
答案

解析
此题考查几何概率
设P到AC的距离为h,。所以当时,满足条件的的面积为
 菱形面积为 所以
答案 
点评:几何概率的求法:用满足条件的长度、面积、体积除以整个的长度、面积、体积。
举一反三
某公园有一滑梯,横截面如图薪示,AB表示楼梯,BC表示平台,CD表示滑道.若点E,F均在线段AD上,四边形BCEF是矩形,且sin∠BAF=,BF=3米,BC=1米,CD=6米.求:
(1) ∠D的度数;
(2)线段AE的长.
题型:不详难度:| 查看答案
如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是(    )

A.BA=BC      B.AC、BD互相平分       C.AC=BD       D.AB∥CD
题型:不详难度:| 查看答案
如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如:平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.
(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有___;
(2)如图1,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD=S△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);
(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.
题型:不详难度:| 查看答案
如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.

(1)求证:AC∥DE;
(2)过点B作BF⊥AC于点F,连结EF,试判断四边形BCEF的形状,并说明理由.
题型:不详难度:| 查看答案
如图,四边形是正方形,延长,使,则的度数是 ▲ °.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.