(1)证明:Rt△DEC是由Rt△ABC绕C点旋转60°得到的, ∴AC=DC,∠ACB=∠ACD=60°, ∴△ACD是等边三角形, ∴AD=DC=AC, 又∵Rt△ABF是由Rt△ABC沿AB所在直线翻转180°得到的, ∴AC=AF,∠ABF=∠ABC=90°, ∵∠ACB=∠ACD=60°, ∴△AFC是等边三角形, ∴AF=FC=AC, ∴AD=DC=FC=AF, ∴四边形AFCD是菱形; (2)四边形ABCG是矩形. 证明:由(1)可知:△ACD,△AFC是等边三角形, △ACB△AFB, ∴∠EDC=∠BAC=∠FAC=30°, 且△ABC为直角三角形, ∴BC=AC, ∵EC=CB, ∴EC=AC, ∴E为AC中点, ∴DE⊥AC, ∴AE=EC, ∵AG∥BC, ∴∠EAG=∠ECB,∠AGE=∠EBC, ∴△AEG△CEB, ∴AG=BC, ∴四边形ABCG是平行四边形,而∠ABC=90°, ∴四边形ABCG是矩形. | |