如图,△ABC中,点P是边AC上的一个动点,过P作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:PE=PF;(2)当

如图,△ABC中,点P是边AC上的一个动点,过P作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:PE=PF;(2)当

题型:不详难度:来源:
如图,△ABC中,点P是边AC上的一个动点,过P作直线MNBC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:PE=PF;
(2)当点P在边AC上运动时,四边形AECF可能是矩形吗?说明理由;
(3)若在AC边上存在点P,使四边形AECF是正方形,且
AP
BC
=


3
2
.求此时∠BAC的大小.
答案
(1)证明:∵CE平分∠BCA,
∴∠BCE=∠ECP,
又∵MNBC,
∴∠BCE=∠CEP,
∴∠ECP=∠CEP,
∴PE=PC;
同理PF=PC,
∴PE=PF;

(2)当点P运动到AC边中点时,四边形AECF是矩形.理由如下:
由(1)可知PE=PF,
∵P是AC中点,
∴AP=PC,
∴四边形AECF是平行四边形.
∵CE、CF分别平分∠BCA、∠ACD,
且∠BCA+∠ACD=180°,
∴∠ECF=∠ECP+∠PCF=
1
2
(∠BCA+∠ACD)=
1
2
×180°=90°,
∴平行四边形AECF是矩形;

(3)若四边形AECF是正方形,则AC⊥EF,AC=2AP.
∵EFBC,
∴AC⊥BC,
∴△ABC是直角三角形,且∠ACB=90°,
∴tan∠BAC=
BC
AC
=
2
2


3
=


3
3

∴∠BAC=30°.
举一反三
如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,△PQR与△BOC相似.
题型:不详难度:| 查看答案
阅读下述说明过程,讨论完成下列问题:
已知:如图所示,在▱ABCD中,∠A的平分线与BC相交于点E,∠B的平分线与AD相交于点F,AE与BF相交于点O,试说明四边形ABEF是菱形.
证明:(1)∵四边形ABCD是平行四边形,
(2)∴ADBC.
(3)∴∠ABE+∠BAF=180°.
(4)∵AE、BF分别平分∠BAF、∠ABE,
(5)∴∠1=∠2=
1
2
∠BAF,∠3=∠4=
1
2
∠ABE.
(6)∴∠1+∠3=
1
2
(∠BAF+∠ABE)=
1
2
×180°=90°.
(7)∴∠AOB=90°.
(8)∴AE⊥BF.
(9)∴四边形ABEF是菱形.

问:①上述说明过程是否正确?
答:______.
②如果错误,指出在第______步到第______步推理错误,应在第______步后添加如下证明过程.
题型:不详难度:| 查看答案
菱形的一个内角等于60°,较短对角线长等于2cm,则菱形较长对角线长等于(  )
A.


3
cm
B.2


3
cm
C.4


2
cm
D.6


3
cm
题型:不详难度:| 查看答案
已知菱形ABCD,AE⊥CD,若AE=4,BC=5,则AC•BD=______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.