探究得到的关系为:BD2+CD2=2AD2 证明:作AE⊥BC于E,如上图所示: 由题意得:ED=BE-BD=CD-CE, 在△ABC中,∠BAC=90°,AB=AC, ∴BE=CE=BC, 由勾股定理可得: AB2+AC2=BC2, ∵AE2=AB2-BE2=AC2-CE2,AD2=AE2+ED2, ∴2AD2=2AE2+2ED2=AB2-BE2+(BE-BD)2+AC2-CE2+(CD-CE)2 =AB2+AC2+BD2+CD2-2BD×BE-2CD×CE, =AB2+AC2+BD2+CD2-2×BC×BC, =BD2+CD2, 即:BD2+CD2=2AD2. |