已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+C

已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+C

题型:广东省期末题难度:来源:
已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2
(1)求证:AB=BC;
(2)当BE⊥AD于E时,试证明:BE=AE+CD.
答案
证明:
(1)连接AC.
∵∠ABC=90°,
∴AB2+BC2=AC2
∵CD⊥AD,
∴AD2+CD2=AC2
∵AD2+CD2=2AB2
∴AB2+BC2=2AB2
∴BC2=AB2
∴AB=BC.
(2)过C作CF⊥BE于F.
∵BE⊥AD,CF⊥BE,CD⊥AD,
∴∠FED=∠CFE=∠D=90°,
∴四边形CDEF是矩形.
∴CD=EF.
∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,
∴∠BAE=∠CBF,
∴在△BAE与△CBF中

∴△BAE≌△CBF.(AAS)
∴AE=BF.
∴BE=BF+EF=AE+CD.
举一反三
边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是(    )cm.
题型:湖北省期末题难度:| 查看答案
我们发现,用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题,这种方法称为等面积法,这是一种重要的数学方法.请你用等面积法来探究下列两个问题:(1)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,请你用它来验证勾股定理;(2)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=4,BC=3,求CD的长度.
题型:广东省期末题难度:| 查看答案
如图,以数轴的单位长度为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是
[     ]
A.1
B.1.4
C.
D.
题型:湖北省期末题难度:| 查看答案
如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是(    )。
题型:湖北省期末题难度:| 查看答案
如图,5米长的一根木棒AB靠在墙上A点处,落地点为B,已知OB=4米.现设计从O点处拉出一根铁丝来加固该木棒.
(1)请你在图中画出铁丝最短时的情形.
(2)如果落地点B向墙角O处移近2米,则木棒上端A上移是少于2米,还是多于2米?说明理由.
(3)如果从O点处拉出一根铁丝至AB的中点P处来加固木棒,这时铁丝在木棒移动后,需要加长还是剪短?还是不变?请说明理由.
题型:湖北省期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.