证明: (1)连接AC. ∵∠ABC=90°, ∴AB2+BC2=AC2. ∵CD⊥AD, ∴AD2+CD2=AC2. ∵AD2+CD2=2AB2, ∴AB2+BC2=2AB2, ∴BC2=AB2, ∴AB=BC. (2)过C作CF⊥BE于F. ∵BE⊥AD,CF⊥BE,CD⊥AD, ∴∠FED=∠CFE=∠D=90°, ∴四边形CDEF是矩形. ∴CD=EF. ∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°, ∴∠BAE=∠CBF, ∴在△BAE与△CBF中 ∴, ∴△BAE≌△CBF.(AAS) ∴AE=BF. ∴BE=BF+EF=AE+CD. |