试题分析:(1)因为AE,BF分别是∠DAB,∠ABC的角平分线,那么就有∠MAB=∠DAB,∠MBA=∠ABC,而∠DAB与∠ABC是同旁内角互补,所以,能得到∠MAB+∠MBA=90°,即得证. (2)两条线段相等.利用平行四边形的对边平行,以及角平分线的性质,可以得到△ADE和△BCF都是等腰三角形,那么就有CF=BC=AD=DE,再利用等量减等量差相等,可证. (1)∵在▱ABCD中,AD∥BC, ∴∠DAB+∠ABC=180°.(1分) ∵AE、BF分别平分∠DAB和∠ABC, ∴∠DAB=2∠BAE,∠ABC=2∠ABF. ∴2∠BAE+2∠ABF=180°. 即∠BAE+∠ABF=90°. ∴∠AMB=90°. ∴AE⊥BF. (2)线段DF与CE是相等关系,即DF=CE, ∵在▱ABCD中,CD∥AB, ∴∠DEA=∠EAB. 又∵AE平分∠DAB, ∴∠DAE=∠EAB. ∴∠DEA=∠DAE. ∴DE=AD.(6分) 同理可得,CF=BC. 又∵在▱ABCD中,AD=BC, ∴DE=CF. ∴DE-EF=CF-EF. 即DF=CE. |