如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是( )A.(6
题型:不详难度:来源:
如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是( )
A.(6,0) | B.(6,3) | C.(6,5) | D.(4,2) |
|
答案
B |
解析
据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断. 解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2. A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意; B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意; C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意; D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意; 故选B. |
举一反三
如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是____________.
|
如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=__________.
|
在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有__________条.
|
如图,O为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为________.
|
操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计: 说明:方案一:图形中的圆过点A、B、C; 方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点. 纸片利用率=×100% 发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点. 你认为小明的这个发现是否正确,请说明理由. (2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%. 请帮忙计算方案二的利用率,并写出求解过程. 探究: (3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率. |
最新试题
热门考点