如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD∶DB = 3∶5,那么CF∶CB等于(A) 5∶8
题型:不详难度:来源:
如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD∶DB = 3∶5,那么CF∶CB等于
(A) 5∶8 (B)3∶8 (C) 3∶5 (D)2∶5 |
答案
A |
解析
试题分析:∵DE∥BC,AD∶DB = 3∶5,∴AE∶EC = AD∶DB = 3∶5。 ∴AC∶EC = 8∶5,即CE∶CA= 5∶8。 又∵EF∥AB,∴CF∶CB= CE∶CA= 5∶8。 故选A。 |
举一反三
在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,连接QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.
(1)求y关于x的函数解析式,并写出x的取值范围; (2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值; (3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值. |
如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH的长为 .
|
如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是
|
在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.
(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2; (2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由; (3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗? 答: (填“成立”或“不成立”) |
如图,点G、E、A、B在一条直线上,Rt△EFG从如图所示是位置出发,沿直线AB向右匀速运动,当点G与B重合时停止运动.设△EFG与矩形ABCD重合部分的面积为S,运动时间为t,则S与t的图象大致是
A. B. C. D. |
最新试题
热门考点