如图,已知AB=3,BC=7,CD=.且AB⊥BC,∠BCD=135°。点M是线段BC上的一个动点,连接AM、DM。①点M在运动过程中,当AM+DM的值最小时,

如图,已知AB=3,BC=7,CD=.且AB⊥BC,∠BCD=135°。点M是线段BC上的一个动点,连接AM、DM。①点M在运动过程中,当AM+DM的值最小时,

题型:不详难度:来源:
如图,已知AB=3,BC=7,CD=.且AB⊥BC,∠BCD=135°。点M是线段BC上的一个动点,连接AM、DM。
①点M在运动过程中,当AM+DM的值最小时,BM=        
②当 AM2+DM2的值最小时,BM=        
答案
、6
解析

试题分析:(1)延长AB到E,使BE=AB,连接ED交BC于M,连接AM,则此时AM+DM的值最小,过D作DF⊥BC交BC延长线于F,求出DF,根据相似求出BM即可;
(2)根据勾股定理得出AM2=AB2+BM2=32+x2,DM2=DF2+FM2=52+(5+7-x)2,相加即可求出答案.
(1)延长AB到E,使BE=AB,连接ED交BC于M,连接AM,则此时AM+DM的值最小,过D作DF⊥BC交BC延长线于F,

∵∠BCD=135°,
∴∠DCF=45°,
∵CD=
则CF=CD×cos45°=5,
DF=CF=5,
∵AB⊥BC,DF⊥BC,
∴AE∥DF,
∴△BEM∽△FDM,

,解得
(2)设BM=x,
在Rt△ABM中,AM2=AB2+BM2=32+x2
∵在Rt△DFM中,DM2=DF2+FM2=52+(5+7-x)2
∴AM2+DM2=9+x2+25+(12-x)2=2x2-24x+178=2(x-6)2+106,
∵2>0,
∴AM2+DM2有最小值,当x=6时,最小值是106,
点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
举一反三
如图,在矩形中,,点在边  上的,过点,交边于点,再把沿对折,点的对应点恰好落在边上,则CP=       .
题型:不详难度:| 查看答案
如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件                      (只需写一个).
题型:不详难度:| 查看答案
已知:把按如图(1)摆放(点与点重合),点)、在同一条直线上..如图(2),从图(1)的位置出发,以的速度沿匀速移动,在移动的同时,点的顶点出发,以2 cm/s的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动.相交于点,连接,设移动时间为

(1)当为何值时,点在线段的垂直平分线上?
(2)连接,设四边形的面积为,求之间的函数关系式;是否存在某一时刻,使面积最小?若存在,求出的最小值;若不存在,说明理由.
(3)是否存在某一时刻,使三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.(图(3)供同学们做题使用)
题型:不详难度:| 查看答案
如图1,已知Rt△ABC中,,AC=8cm,BC=6cm.点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.以AQ、PQ为边作平行四边形AQPD,连接DQ,交AB于点E.设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:

(1)用含有t的代数式表示AE=_____________;
(2)当t为何值时,DQ=AP;
(3)如图2,当t为何值时,平行四边形AQPD为菱形;
(4)直接写出:当DQ的长最小时,t的值.
题型:不详难度:| 查看答案
如图,矩形ABCD中, AB=4,BC=2,点P是射线DA上的一动点,DE⊥CP,垂足为E,EF⊥BE与射线DC交于点F.

(1)若点P在边DA上(与点D、点A不重合).
①求证:△DEF∽△CEB;
②设AP=x,DF=y,求的函数关系式,并写出的取值范围;
(2)当△EFC与△BEC面积之比为3︰16时,线段AP的长为多少?(直接写出答案,不必说明理由).
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.