已知:正方形的边长为1,射线与射线交于点,射线与射线交于点,.(1)如图1,当点在线段上时,试猜想线段、、有怎样的数量关系?并证明你的猜想.(2)设,,当点在线

已知:正方形的边长为1,射线与射线交于点,射线与射线交于点,.(1)如图1,当点在线段上时,试猜想线段、、有怎样的数量关系?并证明你的猜想.(2)设,,当点在线

题型:不详难度:来源:
已知:正方形的边长为1,射线与射线交于点,射线与射线交于点

(1)如图1,当点在线段上时,试猜想线段有怎样的数量关系?并证明你的猜想.
(2)设,当点在线段上运动时(不包括点),如图1,求关于的函数解析式,并指出的取值范围.
(3)当点在射线上运动时(不含端点),点在射线上运动.试判断以为圆心以为半径的和以为圆心以为半径的之间的位置关系.

(4)当点延长线上时,设交于点,如图2.问△与△能否相似,若能相似,求出的值,若不可能相似,请说明理由.
答案
(1),证明见解析 (2)  (3)当点在线段上时,外切;当点延长线上时,内切.(4)相似,所求的长为
解析
(1)猜想:.                                                    (1分)

证明:将△绕着点按顺时针方向旋转,得△
易知点在一直线上.图1.                  (1分)



∴△≌△
.                          (1分)
(2)由(1)得

                      (1分)
化简可得 .                                                 (1+1分)
(3)①当点在点之间时,由(1)知 ,故此时外切;(1分)
②当点在点时,不存在.
③当点延长线上时,
将△绕着点按顺时针方向旋转,得△,图2.
,,,



∴△≌△.                                                       (1分)
.                                         (1分)
∴此时内切.                                                      (1分)
综上所述,当点在线段上时,外切;当点延长线上时,内切.
(4)△与△能够相似,只要当即可.
这时有.                                                            (1分)
,由(3)有
,得
化简可得 .                                                    (1分)
又由,得,即,化简得,          (1分)
解之得,(不符题意,舍去)                               (1分)
∴所求的长为
(1)将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,易知点F′、B、E在一直线上.证得AF′E≌△AFE.从而得到EF=F′E=BE+DF;
(2)由(1)得 EF=x+y再根据 CF=1-y,EC=1-x,得到(1-y)2+(1-x)2=(x+y)2.化简即可得到y=(0<x<1).
(3)当点E在点B、C之间时,由(1)知 EF=BE+DF,故此时⊙E与⊙F外切;当点E在点C时,DF=0,⊙F不存在.当点E在BC延长线上时,将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,证得△AF′E≌△AFE.即可得到EF=EF′=BE-BF′=BE-FD.从而得到此时⊙E与⊙F内切.
(4)△EGF与△EFA能够相似,只要当∠EFG=∠EAF=45°即可.这时有 CF=CE.设BE=x,DF=y,由(3)有EF=x-y.由 CE2+CF2=EF2,得(x-1)2+(1+y)2=(x-y)2.化简可得 y=(x>1).又由 EC=FC,得x-1=1+y,即x-1=1+,化简得x2-2x-1=0,解之即可求得BE的长.
举一反三
如图,分别是的中点,则    

题型:不详难度:| 查看答案
如图,Rt△ABC中,∠C=90°,有三个正方形CDEF、DGHK、GRPQ,它们分别是△ACB、△EDB和△HGB的内接正方形,EF=10cm,HK=7cm,则第三个正方形的边长PQ的长为(     ).

A. 4cm           B. 5cm        C. 4.5 cm         D. 4.9 cm
题型:不详难度:| 查看答案
如图,四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M.

(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.
题型:不详难度:| 查看答案
如图,在正方形ABCD的边长是2,点E是BC边的中点,过点B作BG⊥AE,垂足为G,延长BG交AC于点F,连结EF. 则下列结论中:①S△CEF:S△AFB=1:4;②AB=AF; ③ ;④S四边形ABEF=.正确的序号是(     )
A.①③B.①③④
C.①②④D.②④

题型:不详难度:| 查看答案
已知△ABC与△DEF相似且面积的比为4:9,则△ABC与△DEF的周长比为_____________.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.