根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠ADE,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.解:在正方形ABCD中,∠ABD=∠ADB=45°, ∵∠BAE=22.5°, ∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°, 在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°, ∴∠DAE=∠ADE, ∴AD=DE=4, ∵正方形的边长为4, ∴BD=4, ∴BE=BD﹣DE=4﹣4, ∵EF⊥AB,∠ABD=45°, ∴△BEF是等腰直角三角形, ∴EF=BE=×(4﹣4)=4﹣2. 故选C. |