如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延长线于M,连接CD.下列结论:①BC+CE=A

如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延长线于M,连接CD.下列结论:①BC+CE=A

题型:不详难度:来源:
如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延长线于M,连接CD.下列结论:①BC+CE=AB,②BD=,③BD=CD,④∠ADC=45°,⑤AC+AB=2AM;其中不正确的结论有(    )

A.0个              B.1个     C.2个             D.3个
答案
A
解析

试题分析:
①过点E作EF⊥AB于点F。已知Rt△ABC中,AC=BC∴∠3=45°。
∵在△ACE和△AFE中,∠ACB=90°∴∠EFA=∠ACB=90°,且AE平分∠BAC,所以∠1=∠2.且AE=AE。所以△ACE≌△AFE。∴CE=EF,AC=AF。在Rt△EFB中,∠3=45°,所以EF=FB。所以BC+CE="=AF+FB=AB" 。
②作 AM与BD延长线相交于G,在Rt△ADG和Rt△BCG中,∠G= ∠G,∠GCB= ∠GDA=90°。
∴∠1= ∠6,已知:  AC=BC
∴  Rt△GBC≡Rt△EAC,∴BG="AE" 。又∵DG=DB(可通过角边角证明Rt△ADG≌Rt△ADB)
∴  BD=
③BD=CD:证明:∵由②知DG=DB∴在Rt△BGC中,CD为斜边中线。∴CD=BG=BD
④∵BD=CD所以∠5=∠6=∠1,∵BC∥MD,∴∠MDC=∠5,∠GDM=∠6,∴∠GDC=45°。
∵∠GDA=90°,∴∠ADC=45°
⑤由上可得 AB=AG=AC+CG
∵ DM⊥AC  即 DM//BC, 又 DG=DB
∴  MC=MG=CG
∴  AB-BC=CG=2MC
点评:本题难度较高。学生需要通过辅助线补充好全等直角三角形等条件来证明。一般选择题中出现这种证明过程较复杂的题目,可以直接用排除法排除。
举一反三
如图,已知,要使 ,可补充的条件是             (写出一个即可).
题型:不详难度:| 查看答案
如图,在中,,D、E是内两点,平分若BC=8cm,BE=6cm,则DE=    cm.
题型:不详难度:| 查看答案
如图,点的中点,.求证:△≌△.
题型:不详难度:| 查看答案
如图,在直角中,∠C=90°,DC = 2,∠CAB的平分线AD交BC于点D,DE垂直平分AB.求∠B的度数和DB的长.
题型:不详难度:| 查看答案
数学课上,张老师出示了问题:如图1,△ABC是等边三角形,点D是边BC的中点.,且DE交△ABC外角的平分线CE于点E,求证:AD=DE.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接MD,则△BMD是等边三角形,易证△AMD≌△DCE,所以AD=DE.在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把“点D是边BC的中点”改为“点D是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AD=DE”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小亮提出:如图3,点D是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AD=DE”仍然成立.你认为小华的观点          (填“正确”或“不正确”).
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.