我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形A

我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形A

题型:不详难度:来源:
我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=10,则S2的值是(      )
A.5B.C.3D.4

答案
B
解析

试题分析:将四边形mtkn的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=10,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=10,故3x+12y=10,x+4y=,所以S2=x+4y=.故选B.
点评:此题要求熟练掌握图形面积关系,根据已知得出用x,y表示出S1,S2,S3,再利用S1+S2+S3=10求出是解决问题的关键.
举一反三
等腰三角形的腰长为10,底边长为12,则此等腰三角形面积为________.
题型:不详难度:| 查看答案
等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数是        .
题型:不详难度:| 查看答案
如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是      cm.
题型:不详难度:| 查看答案
如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm、和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是   cm.
题型:不详难度:| 查看答案
如图1,△ABC的边BC在直线上,AC ⊥BC,且AC=BC;△EFP的边FP也在直线上,边EF与边AC重合,且EF=FP.
(1)将△EFP沿直线向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ.猜想  BQ   与AP所满足的数量关系和位置关系。(直接写出结论)
AP           BQ,AP           BQ;   (4分)
(2)将△EFP沿直线向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(1)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.(6分)
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.