如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE, AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE, AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连

题型:不详难度:来源:
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE, AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下结论错误的是(      )
A.PQ∥AEB.AP=BQC.DE="DP"D.∠AOB=60°.

答案
C
解析
分析:根据等边三角形的性质可证∠DCB=60°,由三角形内角和外角定理可证∠DPC>60°,所以DP≠DE.
解答:解:

已知△ABC、△DCE为正三角形,
故∠DCE=∠BCA=60°,∴∠DCB=60°,
又因为∠DPC=∠DAC+∠BCA,∠BCA=60°,∴∠DPC>60°,
故DP不等于DE,C错.
∵△ABC、△DCE为正三角形,
∴∠ACB=∠DCE=60°,AC=BC,DC=EC,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∴△ACD≌△BCE(SAS),
∴∠CAD=∠CBE,
∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB,
∵∠ACB=∠CBE+∠CEB=60°,
∴∠AOB=60°,故D正确;
∵∠ACB=∠DCE=60°,
∴∠BCD=60°,
∴∠ACP=∠BCQ,
∵AC=BC,∠DAC=∠QBC,
∴△ACP≌△BCQ(ASA),
∴AP=BQ,故B正确;
∴CP=CQ,
∵∠PCQ=60°,
∴∠QPC=60°=∠ACB,
∴PQ∥AE,故A正确.
故选C.
举一反三
已知△ABC的三边长分别是a、b、c,且满足,则这个三角形是__________三角形。
题型:不详难度:| 查看答案
如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:①AD=CB,②AE=CF,③∠B=∠D,④AD∥BC.请用其中三个作为已知条件,余下一个作为求证结论,编一道数学问题,并写出解答过程:
已知条件:                     
求证结论:      
证明:
题型:不详难度:| 查看答案
如图,△ABC中,DEAC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为____________.
题型:不详难度:| 查看答案
△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,求∠AQN的度数.
题型:不详难度:| 查看答案
如图所示,已知RtABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点落在AB边上的点D.要使点D恰为AB的中点,问在图中还要添加什么条件?(直接填写答案)
⑴写出两条边满足的条件:______.
⑵写出两个角满足的条件:_____.
⑶写出一个除边、角以外的其他满足条件:___________.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.