如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时, △DMN也随之整体移
题型:不详难度:来源:
如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时, △DMN也随之整体移动) .
(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由; (2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由; (3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由. |
答案
(1)EN与MF相等 (或EN=MF),点F在直线NE上 (2)成立 (3)略 |
解析
(1)判断:EN与MF相等 (或EN=MF),点F在直线NE上, 3分 (说明:答对一个给2分) (2)成立. 4分 证明: 法一:连结DE,DF. 5分 ∵△ABC是等边三角形, ∴AB=AC=BC. 又∵D,E,F是三边的中点, ∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°. 又∠MDF+∠FDN=60°, ∠NDE+∠FDN=60°, ∴∠MDF=∠NDE. 7分 在△DMF和△DNE中,DF=DE,DM=DN, ∠MDF=∠NDE, ∴△DMF≌△DNE. 8分 ∴MF=NE. 9分 法二: 延长EN,则EN过点F. 5分 ∵△ABC是等边三角形, ∴AB=AC=BC. 又∵D,E,F是三边的中点, ∴EF=DF=BF. ∵∠BDM+∠MDF=60°, ∠FDN+∠MDF=60°, ∴∠BDM=∠FDN. 7分 又∵DM=DN, ∠ABM=∠DFN=60°, ∴△DBM≌△DFN. 8分 ∴BM=FN. ∵BF=EF, ∴MF=EN. 9分 法三: 连结DF,NF. 5分 ∵△ABC是等边三角形, ∴AC=BC=AC. 又∵D,E,F是三边的中点, ∴DF为三角形的中位线,∴DF=AC=AB=DB. 又∠BDM+∠MDF=60°, ∠NDF+∠MDF=60°, ∴∠BDM=∠FDN. 7分 在△DBM和△DFN中,DF=DB, DM=DN, ∠BDM=∠NDF,∴△DBM≌△DFN. ∴∠B=∠DFN=60°. 8分 又∵△DEF是△ABC各边中点所构成的三角形, ∴∠DFE=60°. ∴可得点N在EF上, ∴MF=EN. 9分 (3)画出图形(连出线段NE), 11分
MF与EN相等的结论仍然成立(或MF=NE成立).12分 |
举一反三
(满分8分)如图9,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)将△ABC向右平移5个单位长度,画出平移后的△A1B1C1 ; (2)画出△ABC关于x轴对称的△A2B2C2 ; (3)将△ABC绕原点O 旋转180°,画出旋转后的△A3B3C3 ; (4)在△A1B1C1 、△A2B2C2 、△A3B3C3 中△________与△________成轴对称;△________与△________成中心对称. |
△ABC中,∠A=30°,∠C=90°,作△ABC的外接圆.如图,若的长为12cm,那么的长是
|
如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在直线l上滑动,使A,B在函数的图象上.那么k的值是
A .3 B.6 C.12 D. |
如图,在△ABC中,∠B=45°,cos∠C=,AC=5a,则△ABC的面积用含a的式子表示是 . |
三根木条的长度如图,能组成三角形的是( ) |
最新试题
热门考点