解:(Ⅰ)如图(1),折叠后点B与点A重合,连接AC, 则△ACD≌△BCD, 设点C的坐标为(0,m)(m>0), 则BC=OB-OC=4-m, 于是AC=BC=4-m, 在Rt△AOC中,由勾股定理,得AC2=OC2+OA2, 即(4-m)2=m2+22,解得m=, ∴点C的坐标为; | |
(Ⅱ)如图(2),折叠后点B落在OA边上的点为B′连接B′C,B′D, 则△B′CD≌△BCD, 由题设OB′=x,OC=y, 则B′C=BC=OB-OC=4-y, 在Rt△B′OC中,由勾股定理, 得B′C2=OC2+OB′2, ∴(4-y)2=y2+x2, 即, 由点B′在边OA上,有0≤x≤2, ∴解析式(0≤x≤2)为所求, ∵当0≤x≤2时,y随x的增大而减小, ∴y的取值范围为; | |
(Ⅲ)如图(3),折叠后点B落在OA边上的点为B′,连接B′C,B′D,B′D∥OB, 则∠OCB′=∠CB′D, 又∵∠CBD=∠CB′D, ∴∠CB′=∠CBD, ∴CB′∥BA, ∴Rt△COB′∽Rt△BOA, 有, 得OC=20B′, 在Rt△B′OC中,设OB′=x0(x0>0),则OC=2x0, 由(Ⅱ)的结论,得2x0=, 解得x0=, ∵x0>0, ∴x0=, ∴点C的坐标为。 | |