如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每

如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每

题型:贵州省中考真题难度:来源:
如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10)。
(1)当t为何值时,四边形PCDQ为平行四边形?
(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由。
答案
解:(1)∵AD∥BC,BC=20cm,AD=10cm,
点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,
∴DQ=t,PC=20-2t,
∵若四边形PCDQ为平行四边形,则DQ=PC,
∴20-2t=t,
解得:t=
(2)线段PH的长不变,
∵AD∥BH,P、Q两点的速度比为2:1,
∴QD:BP=1:2,
∴QE:EP=ED:BE=1:2,
∵EF∥BH,
∴ED:DB=EF:BC=1:3,
∵BC=20,
∴EF=

∴PH=20cm。
举一反三
已知:在△ABC中,BC=2AC,∠DBC=∠ACB,BD=BC,CD交线段AB于点E。
(1)如图1,当∠ACB=90°时,则线段DE、CE之间的数量关系为;
(2)如图2,当∠ACB=120°时,求证:DE=3CE:
(3)如图3,在(2)的条件下,点F是BC边的中点,连接DF,DF与AB交于G,△DKG和△DBG关于直线DG对称(点B的对称点是点K,延长DK交AB于点H)若BH=10,求CE的长。
题型:黑龙江省中考真题难度:| 查看答案
已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足(如图(1)所示)。
(1)当AD=2,且点Q与点B重合时(如图(2)所示),求线段PC的长;
(2)在图(1)中,连接AP,当,且点Q在线段AB上时,设点B、Q之间的距离为x,,其中S△APQ表示△APQ的面积,S△PBC表示△PBC的面积,求y关于x的函数解析式,并写出函数定义域;
(3)当AD<AB,且点Q在线段AB的延长线上时(如图(3)所示),求∠QPC的大小。
题型:上海中考真题难度:| 查看答案
在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为 [     ]
A.8,3
B.8,6
C.4,3
D.4,6
题型:天津中考真题难度:| 查看答案
已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4,如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D。
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;
(Ⅲ)若折叠后点B落在边OA上的点为B′,且使B′D∥OB,求此时点C的坐标。
题型:天津中考真题难度:| 查看答案
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC= 90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点 E,且AE=AC。
(1)求证:BG=FG;
(2)若AD=DC=2,求AB的长。
题型:重庆市中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.