如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cos A=.(1)求线段CD的长;(2)求sin ∠DBE的

如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cos A=.(1)求线段CD的长;(2)求sin ∠DBE的

题型:不详难度:来源:
如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cos A=.

(1)求线段CD的长;
(2)求sin ∠DBE的值.
答案
(1)   (2)
解析

解:(1)∵AC=15,
cos A=

∴AB=25,
∵△ACB为直角三角形,D是边AB的中点,
∴CD=
(2)AD=BD=CD=,设DE=x,EB=y,则

解得x=
∴sin ∠DBE=.
举一反三
如图,为了测量电线杆AB的高度,小明将测角仪放在与电线杆的水平距离为9 m的D处.若测角仪CD的高度为1.5 m,在C处测得电线杆顶端A的仰角为36°,则电线杆AB的高度约为________m(精确到0.1 m).(参考数据:sin 36°≈0.59,cos 36°≈0.81,tan 36°≈0.73)

题型:不详难度:| 查看答案
在一自助夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200 m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距________m.

题型:不详难度:| 查看答案
小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直地面放置的标杆在地面上的影长为2米,则树的高度为   (  )
A.(6+)米B.12米
C.(4+2)米D.10米

题型:不详难度:| 查看答案
超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.

(1)求B、C两点的距离;
(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?
(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)
题型:不详难度:| 查看答案
某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行小时到达B处,那么tan∠ABP=(  )
A.B.2
C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.