试题分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可; 试题解析:∵△ABC是等边三角形, ∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°, ∵QN∥AC,AM=BM. ∴N为BC中点, ∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°, 分为三种情况:①如图1
当⊙P切AB于M′时,连接PM′, 则PM′=cm,∠PM′M=90°, ∵∠PMM′=∠BMN=60°, ∴M′M=1cm,PM=2MM′=2cm, ∴QP=4cm-2cm=2cm, 即t=2; ②如图2,
当⊙P于AC切于A点时,连接PA, 则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm, ∴PM=1cm, ∴QP=4cm-1cm=3cm, 即t=3, 当⊙P于AC切于C点时,连接P′C, 则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm, ∴P′N=1cm, ∴QP=4cm+2cm+1cm=7cm, 即当3≤t≤7时,⊙P和AC边相切; ③如图3,
当⊙P切BC于N′时,连接PN′ 则PN′=cm,∠PN′N=90°, ∵∠PNN′=∠BNM=60°, ∴N′N=1cm,PN=2NN′=2cm, ∴QP=4cm+2cm+2cm=8cm, 即t=8. |