如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的

如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的

题型:不详难度:来源:
如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.
(1)求证:CF是⊙O的切线;
(2)求证:△ACM∽△DCN;
(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.

答案
(1)证明见解析;(2)证明见解析;(3)BN=
解析

试题分析:(1)根据切线的判定定理得出∠1+∠BCO=90°,即可得出答案;
(2)利用已知得出∠3=∠2,∠4=∠D,再利用相似三角形的判定方法得出即可;
(3)根据已知得出OE的长,进而利用勾股定理得出EC,AC,BC的长,即可得出CD,利用(2)中相似三角形的性质得出NB的长即可.
(1)证明:∵△BCO中,BO=CO,
∴∠B=∠BCO,
在Rt△BCE中,∠2+∠B=90°,
又∵∠1=∠2,
∴∠1+∠BCO=90°,
即∠FCO=90°,
∴CF是⊙O的切线;
(2)证明:如图,∵AB是⊙O直径,
∴∠ACB=∠FCO=90°,
∴∠ACB-∠BCO=∠FCO-∠BCO,
即∠3=∠1,
∴∠3=∠2,
∵∠4=∠D,
∴△ACM∽△DCN;

(3)解:∵⊙O的半径为4,即AO=CO=BO=4,
在Rt△COE中,cos∠BOC=
∴OE=CO•cos∠BOC=4×=1,
由此可得:BE=3,AE=5,由勾股定理可得:


∵AB是⊙O直径,AB⊥CD,
∴由垂径定理得:CD=2CE=2
∵△ACM∽△DCN,
 ,
∵点M是CO的中点,CM=AO=×4=2,
∴CN=
∴BN=BC-CN=2-=
举一反三
如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于(  )
A.55°B.60°C.65°D.70°

题型:不详难度:| 查看答案
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
(3)若⊙O的半径为5,∠BAC=60°,求DE的长.

题型:不详难度:| 查看答案
如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD•CD;②BE2=EG•AE;③AE•AD=AB•AC;④AG•EG=BG•CG.其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
圆锥的高是4cm,母线长5cm,则其侧面展开图的面积为(  )
A.30πcm2B.24πcm2C.15πcm2D.18πcm2

题型:不详难度:| 查看答案
已知⊙O1和⊙O2外切,半径分别为1cm和3cm,那么半径为5cm且与⊙O1、⊙O2都相切的圆一共可以作出        个.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.