如图,,且∠A=60°,半径OB=2,则下列结论不正确的是(  )A.∠B=60°B.∠BOC=120°C.的度数为240°D.弦BC=

如图,,且∠A=60°,半径OB=2,则下列结论不正确的是(  )A.∠B=60°B.∠BOC=120°C.的度数为240°D.弦BC=

题型:不详难度:来源:
如图,,且∠A=60°,半径OB=2,则下列结论不正确的是(  )
A.∠B=60°B.∠BOC=120°
C.的度数为240°D.弦BC=

答案
D.
解析

试题分析:作OD⊥BC于D,连结OB、OC,根据圆周角定理得到∠B=∠C=60°,∠BOC=2∠A=120°,在根据圆心角、弦、弧的关系得到的度数为240°;由OD⊥BC,利用垂径定理得BD=CD,再利用含30度的直角三角形三边的关系可计算出BC.
作OD⊥BC于D,连结OB、OC,如图,

,且∠A=60°,
∴∠B=∠C=60°,∠BOC=2∠A=120°,
的度数为240°;
∵OD⊥BC,
∴BD=CD,∠OBD=30°,
而OB=2,
∴OD=1,
∴BD=OD=
∴BC=2BD=2
故选D.
考点: 1.圆周角定理;2.等边三角形的判定与性质;3.垂径定理;4.圆心角、弧、弦的关系.
举一反三
如图,AB是⊙O的弦,C是AB的中点,若OC=AB=,则半径OB的长为        

题型:不详难度:| 查看答案
如图,Rt△ABC中,∠C=90°,AC=6,BC=8.则△ABC的内切圆半径r=         

 
题型:不详难度:| 查看答案
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).

(1)画出△AOB绕点O逆时针旋转90°后得到的△A1OB1
(2)填空:点A1的坐标为               .
(3)求出在旋转过程中,线段OB扫过的扇形面积.
题型:不详难度:| 查看答案
如图,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.

(1)若∠BAC=30°,求证:CD平分OB.
(2)若点E为的中点,连接0E,CE.求证:CE平分∠OCD.
(3)若⊙O的半径为4,∠BAC=30°,则圆周上到直线AC距离为3的点有多少个?请说明理由.
题型:不详难度:| 查看答案
如图所示,⊙O1、⊙O2的圆心O1、O2在直线l上,⊙O1的半径为2,⊙O2的半径为3,O1O2=8,⊙O1以每秒1个单位的速度沿直线l向右平移运动,7秒后停止运动,此时⊙O1 与⊙O2的位置关系是(  ).
A.外切B.相交C.内切D.内含

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.