如图,在平面直角坐标系中,已知A(8,0),B(0,6),⊙M经过原点O及点A、B.(1)求⊙M的半径及圆心M的坐标;(2)过点B作⊙M的切线l,求直线l的解析

如图,在平面直角坐标系中,已知A(8,0),B(0,6),⊙M经过原点O及点A、B.(1)求⊙M的半径及圆心M的坐标;(2)过点B作⊙M的切线l,求直线l的解析

题型:不详难度:来源:
如图,在平面直角坐标系中,已知A(8,0),B(0,6),⊙M经过原点O及点A、B.

(1)求⊙M的半径及圆心M的坐标;
(2)过点B作⊙M的切线l,求直线l的解析式;
(3)∠BOA的平分线交AB于点N,交⊙M于点E,求点N的坐标和线段OE的长.
答案
解:(1)∵∠AOB=90°,∴AB为⊙M的直径。
∵A(8,0),B(0,6),∴OA=8,OB=6。

∴⊙M的半径为5;圆心M的坐标为((4,3)。
(2)如图,设点B作⊙M的切线l交x轴于C,

∵BC与⊙M相切,AB为直径,∴AB⊥BC。
∴∠ABC=90°,∴∠CBO+∠ABO=90°。
∵∠BAO+∠ABO=90°,∴∠BAO=∠CBO。
∴Rt△ABO∽Rt△BCO。
,即,解得
∴C点坐标为(,0)。
设直线BC的解析式为y=kx+b,
把B(0,6)、C点(,0)分别代入得
,解得
∴直线l的解析式为y=x+6。
(3)如图,作ND⊥x轴,连接AE,
∵∠BOA的平分线交AB于点N,∴△NOD为等腰直角三角形。
∴ND=OD。∴ND∥OB。∴△ADN∽△AOB。
∴ND:OB=AD:AO,∴ND:6=(8﹣ND):8,解得ND=
∴OD=,ON=ND=
∴N点坐标为()。
∵△ADN∽△AOB,∴ND:OB=AN:AB,即:6=AN:10,解得AN=
∴BN=10﹣=
∵∠OBA=OEA,∠BOE=∠BAE,∴△BON∽△EAN。
∴BN:NE=ON:AN,即:NE=,解得NE=
∴OE=ON+NE=+=
解析
(1)根据圆周角定理∠AOB=90°得AB为⊙M的直径,则可得到线段AB的中点即点M的坐标,然后利用勾股定理计算出AB=10,则可确定⊙M的半径为5。
(2)点B作⊙M的切线l交x轴于C,由切线的性质得AB⊥BC,由等角的余角相等得到∠BAO=∠CBO,根据相似三角形的判定方法有Rt△ABO∽Rt△BCO,所以,可解得,则C点坐标为(,0),最后运用待定系数法确定l的解析式。
(3)作ND⊥x轴,连接AE,易得△NOD为等腰直角三角形,所以ND=OD,ON=ND,再利用ND∥OB得到△ADN∽△AOB,则ND:OB=AD:AO,即ND:6=(8﹣ND):8,解得ND=,所以OD=,ON=,即可确定N点坐标;由于△ADN∽△AOB,利用ND:OB=AN:AB,可求得AN=,则BN=10﹣=,然后利用圆周角定理得∠OBA=OEA,∠BOE=∠BAE,所以△BON∽△EAN,再利用相似比可求出ME,最后由OE=ON+NE计算即可。
举一反三
如果⊙O1与⊙O2的半径分别是1和2,并且两圆相外切,那么圆心距O1O2的长是
       .
题型:不详难度:| 查看答案
如图,⊙O1,⊙O2、相交于A、B两点,两圆半径分别为6cm和8cm,两圆的连心线O1O2的长为10cm,则弦AB的长为【   】

A.4.8cm       B.9.6cm       C.5.6cm       D.9.4cm
题型:不详难度:| 查看答案
如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB=     

题型:不详难度:| 查看答案
一圆锥的底面半径为1cm,母线长2cm,则该圆锥的侧面积为     cm2
题型:不详难度:| 查看答案
若⊙O1和⊙O2的半径分别为3cm和4cm,圆心距d=7cm,则这两圆的位置是【   】
A.相交B.内切C.外切D.外离

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.