如图所示,已知四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.若BM=,的长是.求证:

如图所示,已知四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.若BM=,的长是.求证:

题型:不详难度:来源:
如图所示,已知四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.若BM=的长是.求证:直线BC与⊙O相切.

答案
证明见解析
解析

试题分析:过点O作OF⊥BC于F,过点B作BG⊥OA于G,则四边形BGOF为矩形,OF=BG。设菱形OABC的边长为2a,先在Rt△BMG中,利用勾股定理得出BG2+GM2=BM2,即(a)2+(2a)2=(2,求得a=1,得到OF=,再根据弧长公式求出r=,则圆心O到直线BC的距离等于圆的半径r,从而判定直线BC与⊙O相切。 
证明:如图,过点O作OF⊥BC于F,过点B作BG⊥OA于G,则四边形BGOF为矩形,OF=BG.

设菱形OABC的边长为2a,则AM=OA=a.
∵菱形OABC中,AB∥OC,∠COA =60°,
∴∠BAG=∠COA=60°,∠ABG=90°﹣60°=30°。
∴AG=AB=a,BG=AG=a。
在Rt△BMG中,
∵∠BGM=90°,BG=aGM=a+a=2a,BM=
∴BG2+GM2=BM2,即(a)2+(2a)2=(2,解得a=1。∴OF=BG=
又∵的长=,∴r=
∴OF=r=,即圆心O到直线BC的距离等于圆的半径r。
∴直线BC与⊙O相切。
举一反三
已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆的位置关系是
A.相离B.外切C.相交D.内切

题型:不详难度:| 查看答案
已知扇形的面积为2π,半径为3,则该扇形的弧长为   (结果保留π).
题型:不详难度:| 查看答案
如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是   

题型:不详难度:| 查看答案
如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)设OE交⊙O于点F,若DF=1,BC=2,求由劣弧BC、线段CE和BE所围成的图形面积S.

题型:不详难度:| 查看答案
如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是   cm(写出一个符合条件的数值即可)

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.