如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论中正确的结论有(    

如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论中正确的结论有(    

题型:不详难度:来源:
如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论中正确的结论有(    )个
①EF是△ABC的中位线.
②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;
③设OD=m,AE+AF=2n,则SAEF=mn;


(A)1个       (B)2个      (C)3个     (D)4个
答案
C
解析
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,
∴∠OBC+∠OCB=90°﹣∠A,
∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故①正确;
过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴ON=OD=OM=m,
∴SAEF=SAOE+SAOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故③正确;
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴∠EAB=∠OBC,∠FCO=∠OCB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴EB=EO,FO=FC,
∴EF=EO+FO=BE+CF,
∴以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切,故④正确.
∴其中正确的结论是①③④.故选C.

举一反三
如图,在△ABC中,∠C= 90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
小题1:若AC=6,AB=10,求⊙O的半径;
小题2:连接OE、ED、DF、EF.若四边形BDEF是平行四边形,
试判断四边形OFDE的形状,并说明理由.
题型:不详难度:| 查看答案
已知,如图,AB为⊙O的直径,弦DC延长线上有一点P,∠PAC=∠PDA.
小题1:求证:PA是⊙O的切线;
小题2:若AD=6,∠ACD=60°, 求⊙O的半径.
      
题型:不详难度:| 查看答案
如图:⊙O是△ABC的内切圆,D、E、F是切点,若∠DEF=50º,      
则∠A等于(  )                                                
A.40º      B.50º     C.80º     D.100º                                      
题型:不详难度:| 查看答案
ΔABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为____.
题型:不详难度:| 查看答案
如图,AB是圆的直径,AC是圆的弦,.在图中画出弦AD,使AD=1,则的度数为    ▲    
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.