(本小题8分)已知AB与⊙O相切于点C,OA=OB.OA、OB与⊙O分别交于点D、E.(I) 如图①,若⊙O的直径为8AB=10,求OA的长(结果保留根号);(

(本小题8分)已知AB与⊙O相切于点C,OA=OB.OA、OB与⊙O分别交于点D、E.(I) 如图①,若⊙O的直径为8AB=10,求OA的长(结果保留根号);(

题型:不详难度:来源:
(本小题8分)已知AB与⊙O相切于点C,OA=OB.OA、OB与⊙O分别交于点D、E.
(I) 如图①,若⊙O的直径为8AB=10,求OA的长(结果保留根号);
(Ⅱ)如图②,连接CD、CE,-若四边形dODCE为菱形.求的值.
答案
(Ⅰ)OA= (Ⅱ)
解析
(1)连接OC,根据切线的性质得出OC⊥AB,再由勾股定理求得OA即可;
(2)根据菱形的性质,求得OD=CD,则△ODC为等边三角形,可得出∠A=30°,即
可求得的值。
(1)如图①,连接OC,则OC=4,
∵AB与⊙O相切于点C,∴OC⊥AB,
∴在△OAB中,由AO=OB,AB=10
得AC=AB=5。在Rt△AOC中,由勾股定理得OA=
(2)如图②,连接OC,则OC=OD,
∵四边形ODCE为菱形,∴OD=CD,
∴△ODC为等边三角形,有∠AOC=60°.
由(1)知,∠OCA=90°,∴∠A=30°,
。故答案为(1)OA=;(2)
举一反三
如图7,点O为优弧ACB所在圆的心,∠AOC=108°,点DAB的延长线上,
BD=BC,则∠D=____________.
题型:不详难度:| 查看答案
(本小题满分10分)
如图14①至图14④中,两平行线ABCD音的距离均为6,点MAB上一定点.
思考:如图14①中,圆心为O的半圆形纸片在AB、CD之间(包括AB、CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α,当α=________度时,点PCD的距离最小,最小值为____________.
探究一在图14①的基础上,以点M为旋转中心,在ABCD之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO=_______度,此时点NCD的距离是______________.
探究二将图14①中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点MABCD之间顺时针旋转.
⑴如图14③,当α=60°时,求在旋转过程中,点PCD的最小距离,并请指出旋转角∠BMO的最大值:
⑵如图14④,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数据:sin49°=cos41°=tan37°=
            
题型:不详难度:| 查看答案
(2011•舟山)如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为(  )
A.6B.8
C.10D.12

题型:不详难度:| 查看答案
(2011•舟山)如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连接CD、OD,给出以下四个结论:①AC∥OD;②CE=OE;③△ODE∽△ADO;④2CD2=CE•AB.其中正确结论的序号是_______________
题型:不详难度:| 查看答案
如图,∠A是⊙O的圆周角,∠A=60°,则∠OBC的度数为    度.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.