(1)证明:∵BC是⊙O的直径,BE是⊙O的切线, ∴EB⊥BC. 又∵AD⊥BC, ∴AD∥BE. ∵△BFC∽△DGC,△FEC∽△GAC, ∴=,=. ∴=. ∵G是AD的中点, ∴DG=AG. ∴BF=EF.
(2)证明:连接AO,AB, ∵BC是⊙O的直径, ∴∠BAC=90°. 在Rt△BAE中,由(1),知F是斜边BE的中点, ∴AF=FB=EF. ∴∠FBA=∠FAB. 又∵OA=OB, ∴∠ABO=∠BAO. ∵BE是⊙O的切线, ∴∠EBO=90°. ∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°, ∴PA是⊙O的切线.
(3)过点F作FH⊥AD于点H, ∵BD⊥AD,FH⊥AD, ∴FH∥BC. 由(2),知∠FBA=∠BAF, ∴BF=AF. 由已知,有BF=FG, ∴AF=FG,即△AFG是等腰三角形. ∵FH⊥AD, ∴AH=GH. ∵DG=AG, ∴DG=2HG. 即=. ∵FH∥BD,BF∥AD,∠FBD=90°, ∴四边形BDHF是矩形,BD=FH. ∵FH∥BC,易证△HFG∽△DCG, ∴==. 即===. ∵⊙O的半径长为3, ∴BC=6. ∴===. 解得BD=2. ∴BD=FH=2. ∵==, ∴CF=3FG. 在Rt△FBC中, ∵CF=3FG,BF=FG, ∴CF2=BF2+BC2∴(3FG)2=FG2+(6)2 解得FG=3(负值舍去) ∴FG=3.
|