已知△ABC中,AC=BC,∠CAB=α(定值),圆O的圆心O在AB上,并分别与AC、BC相切于点P、Q.(1)求∠POQ的大小(用α表示);(2)设D是CA延

已知△ABC中,AC=BC,∠CAB=α(定值),圆O的圆心O在AB上,并分别与AC、BC相切于点P、Q.(1)求∠POQ的大小(用α表示);(2)设D是CA延

题型:不详难度:来源:
已知△ABC中,AC=BC,∠CAB=α(定值),圆O的圆心O在AB上,并分别与AC、BC相切于点P、Q.
(1)求∠POQ的大小(用α表示);
(2)设D是CA延长线上的一个动点,DE与圆O相切于点M,点E在CB的延长线上,试判断∠DOE的大小是否保持不变,并说明理由;
(3)在(2)的条件下,如果AB=m(m为已知数),cosα=
3
5
,设AD=x,DE=y,求y关于x的函数解析式(要指出函数的定义域)
答案
(1)∵AC=BC,
∴∠OAP=∠OBQ=α
∵圆O分别和AC、BC相切于点P、Q,
∴∠OPA=∠OQB=90°,(1分)
∴∠AOP=∠BOQ=90°-α(1分)
∴∠POQ=180°-2(90°-a)=2α(1分)

(2)∠DOE的大小保持不变,(1分)
说明理由如下:
连接OM,由切线长定理,EM=EQ
又∵OM=OQ,OE=OE,
∴△OEM≌△OEQ,
∴∠MOE=∠QOE(1分)
同理,∠MOD=∠POD(1分)
∴∠DOE=
1
2
(∠POM+∠QOM)=
1
2
(360°-∠POQ)=180°-a,
∵a为定值,
∴∠DOE的大小保持不变.

(3)由OP=OQ,并根据等腰三角形的性质,得O是AB的中点,
即OA=OB=
1
2
AB=
m
2

AP=BQ=AO•cosa=
3
10
m,DM=DP=
3
10
m
+x(1分)
在△ADO和△BOE中,∠DAO=∠OBE=180°-α
∵∠ADO+∠AOD=∠OAP=α,
又∵∠BOE+∠AOD=180°-∠DOE=α,
∴∠ADO=∠BOE,于是△ADO△BOE(1分)
BE
AO
=
AD
BO
,BE=
AO•BO
AD
=
m2
4x
(1分)
∴ME=QE=QB+BE=
3
10
m+
m2
4x
(1分)
∴DE=DM+ME=
3
10
m+x+
3
10
m+
m2
4x
=x+
m2
4x
+
3
5
m

因此所求的函数解析为y=x+
m2
4x
+
3
5
m(x>0)
.(1分)
举一反三
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FHBC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD.
题型:不详难度:| 查看答案
如图,⊙O和⊙O′都经过点A和点B,点P在BA的延长线上,过P作⊙O的割线PCD交⊙O于C、D,作⊙O′的切线PE切⊙O′于E,若PC=4,CD=5,则PE等于(  )
A.6B.2


5
C.20D.36

题型:不详难度:| 查看答案
如图,⊙O′经过⊙O的圆心,E、F是两圆的交点,直线OO′交⊙O′于点P,交EF于点C,交⊙O于点Q,且EF=2


15
,sin∠P=
1
4

(1)求证:PE是⊙O的切线;
(2)求⊙O和⊙O′的半径的长;
(3)若点A在劣弧
QF
上运动(与点Q、F不重合),连接PA交劣弧
DF
于点B,连接BC并延长交⊙O于点G,设CG=x,PA=y,求y关于x的函数关系式,并写出自变量x的取值范围.
题型:不详难度:| 查看答案
如图1,已知正方形ABCD的边长为2


3
,点M是AD的中点,P是线段MD上的一动点(P不与M,D重合),以AB为直径作⊙O,过点P作⊙O的切线交BC于点F,切点为E.
(1)除正方形ABCD的四边和⊙O中的半径外,图中还有哪些相等的线段(不能添加字母和辅助线);
(2)求四边形CDPF的周长;
(3)延长CD,FP相交于点G,如图2所示.是否存在点P,使BF•FG=CF•OF?如果存在,试求此时AP的长;如果不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在直角梯形ABCD中,ABDC,∠B=90°,P为BC上一点.
(1)若∠APD=90°,找出图中两个相似的三角形,并加以证明;
(2)若AB=9,DC=4,P为BC的中点,∠APD=90°,求BC的长;
(3)在(2)的条件下,试探求以AD为直径的圆与BC所在直线的位置关系,并予以证明.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.