(1)证明:连接AE, ∵AB是⊙O的直径, ∴∠AEB=90°, ∴∠1+∠2=90°. ∵AB=AC, ∴∠1=∠CAB. ∵∠CBF=∠CAB, ∴∠1=∠CBF ∴∠CBF+∠2=90° 即∠ABF=90° ∵AB是⊙O的直径, ∴直线BF是⊙O的切线.
(2)过点C作CG⊥AB于G. ∵sin∠CBF=,∠1=∠CBF, ∴sin∠1=, ∵在Rt△AEB中,∠AEB=90°,AB=5, ∴BE=AB•sin∠1=, ∵AB=AC,∠AEB=90°, ∴BC=2BE=2, 在Rt△ABE中,由勾股定理得AE==2, ∴sin∠2==,cos∠2==, 在Rt△CBG中,可求得GC=4,GB=2, ∴AG=3, ∵GC∥BF, ∴△AGC∽△ABF, ∴= ∴BF== |