如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧CBA上一点(不与A、C重合)(1)求∠APC与∠ACD的度数;(2)当点

如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧CBA上一点(不与A、C重合)(1)求∠APC与∠ACD的度数;(2)当点

题型:不详难度:来源:
如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧CBA上一点(不与A、C重合)
(1)求∠APC与∠ACD的度数;
(2)当点P移动到弧CB的中点时,四边形OBPC是什么特殊的四边形,说明理由.
答案
(1)连接AC,如图所示:
∵AC=2,OA=OB=OC=
1
2
AB=2,
∴AC=OA=OC,
∴△ACO为等边三角形,
∴∠AOC=∠ACO=∠OAC=60°,
∴∠APC=
1
2
∠AOC=30°,
又DC与圆O相切于点C,
∴OC⊥DC,
∴∠DCO=90°,
∴∠ACD=∠DCO-∠ACO=90°-60°=30°;
(2)当点P移动到弧CB的中点时,四边形OBPC是菱形,
理由如下:
连接PB,OP,
∵AB为直径,∠AOC=60°,
∴∠COB=120°,
当点P移动到CB的中点时,∠COP=∠POB=60°,
∴△COP和△BOP都为等边三角形,
∴OC=CP=OB=PB,
则四边形OBPC为菱形.
举一反三
在△ABC中,∠C=90°,AC=3cm,BC=4cm,扇形ODF与BC边相切,切点是E,若FO⊥AB于点O.则扇形的半径为______.
题型:不详难度:| 查看答案
如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=


2
,BC=2,求⊙O的半径.
题型:不详难度:| 查看答案
如图,已知:AB是⊙O的直径,BC、CD分别是⊙O的切线,切点分别为B、D,E是BA和CD的延长线的交点.
(1)猜想AD与OC的位置关系,并加以证明;
(2)设AD•OC的积为S,⊙O的半径为r,试探究S与r的关系;
(3)当r=2,sin∠E=
1
3
时,求AD和OC的值.
题型:不详难度:| 查看答案
如图,⊙O的直径AB=18,AC和BD是它的两条切线,CD与⊙O相切于E,且与AC、BD相交于点C、D,设
AC=x,BD=y,试求xy的值.
题型:不详难度:| 查看答案
已知⊙O的半径为3cm,直线l上有一点P,且OP=3cm,则直线l与OD的位置关系为(  )
A.相切B.相交C.相离D.相切或相交
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.