如图,已知PA、PB切⊙O于A、B两点.连接AB且PA、PB的长分别是方程x2-2mx+3=0的两根,AB=m,求⊙O的半径.

如图,已知PA、PB切⊙O于A、B两点.连接AB且PA、PB的长分别是方程x2-2mx+3=0的两根,AB=m,求⊙O的半径.

题型:不详难度:来源:
如图,已知PA、PB切⊙O于A、B两点.连接AB且PA、PB的长分别是方程x2-2mx+3=0的两根,AB=m,求⊙O的半径.
答案
∵PA、PB切⊙O于A、B两点,
∴PA=PB,
∵PA、PB的长分别是方程x2-2mx+3=0的两根,
∴△=(-2m)2-4×3=0,
∴m2=3,m>0,
∴m=


3

∴x2-2


3
x+3=0,
∴x1=x2=


3

∴PA=PB=AB=


3

∴△ABP等边三角形,
∴∠APB=60°,
∴∠APO=30°,
∵PA=


3

∴OA=1.
即⊙O的半径为1.
举一反三
如图,在直角梯形ABCD中,ADBC,∠D=90°,AD=a,BC=b,AB=c,以AB为直径作⊙O.试探究:
(1)当a,b,c满足什么关系时,⊙O与DC相离?
(2)当a,b,c满足什么关系时,⊙O与DC相切?
(3)当a,b,c满足什么关系时,⊙O与DC相交?
题型:不详难度:| 查看答案
如图,以坐标原点O为圆心,6为半径的圆交y轴于A、B两点.AM、BN为⊙O的切线.D是切线AM上一点(D与A不重合),DE切⊙O于点E,与BN交于点C,且AD<BC.设AD=m,BC=n.
(1)求m•n的值;
(2)若m、n是方程2t2-30t+k=0的两根.求:
①△COD的面积;
②CD所在直线的解析式;
③切点E的坐标.
题型:不详难度:| 查看答案
已知:如图,⊙O的半径OC垂直弦AB于点H,连接BC,过点A作弦AEBC,过点C作CDBA交EA延长线于点D,延长CO交AE于点F.
(1)求证:CD为⊙O的切线;
(2)若BC=5,AB=8,求OF的长.
题型:不详难度:| 查看答案
如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,分别交PA、PB于点C、D.若PA、PB的长是关于x的一元二次方程x2-mx+m-1=0的两个根,求△PCD的周长.
题型:不详难度:| 查看答案
两圆外切,半径为4cm和9cm,则两圆的一条外公切线的长等于______cm。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.